Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study assesses the hydrochemical dynamics of surface waters in Ukraine’s border regions with Poland and Slovakia over a 15-year period. Key water quality parameters, including sulfates (SO42-), biochemical oxygen demand (BOD5), dissolved oxygen (DO), and total suspended solids (TSS), were analysed to determine the ecological state of these transboundary water bodies. The results indicate that sulfate concentrations remain below the maximum permissible concentrations (MPC) for both household and fishery water use. BOD5 and DO levels generally comply with environmental standards, though localized areas show signs of organic pollution. TSS concentrations remain within acceptable limits, likely influenced by natural erosion and occasional anthropogenic activities. Pearson correlation analysis revealed significant relationships between nitrogen and nitrates (r = 0.814), underscoring the role of agricultural runoff in nutrient dynamics. Negative correlations between DO and several pollutants suggest that organic and chemical contamination affects oxygen availability. These findings emphasize the need for continued monitoring and transboundary collaboration to safeguard water quality in the region.
Wydawca
Rocznik
Tom
Strony
305--314
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- Department of Software, Lviv Polytechnic National University, Lviv, 12, Stepan Bandera St., 79013, Ukraine
autor
- Department of Ecological Safety and Nature Protection Activity, Lviv Polytechnic National University, Lviv, 12, Stepan Bandera St., 79013, Ukraine
autor
- Department of Ecological Safety and Nature Protection Activity, Lviv Polytechnic National University, Lviv, 12, Stepan Bandera St., 79013, Ukraine
autor
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Presov, Presov, 080 01, Slovakia
Bibliografia
- 1. Babuji P., Thirumalaisamy S., Duraisamy K., Periyasamy G. 2023. Human Health Risks due to Exposure to Water Pollution: A Review. Water, 15, 2532.
- 2. Bernatska N., Dzhumelia E., Dyakiv V., Mitryasova O., Salamon I. 2023. Web-based information and analytical monitoring system tools – Online Visualization and Analysis of Surface Water Quality of Mining and Chemical Enterprises. Ecol. Eng. Environ. Technol., 24, 99–108.
- 3. Beyaitan Bantin A., Wang H., Jun X. 2020. Analysis and control of the physicochemical quality of groundwater in the Chari Baguirmi Region in Chad. Water, 12, 2826.
- 4. Cabinet of Ministers of Ukraine. 1996. On the approval of the procedure for the development of standards for the maximum permissible discharge of pollutants into water bodies and the list of pollutants whose discharge into water bodies is regulated. Official website of the Parliament of Ukraine. https://zakon.rada.gov.ua/go/1100-96-%D0%BF
- 5. Chidiac S., El Najjar P., Ouaini N., El Rayess Y., El Azzi D. 2023. A comprehensive review of water quality indices (WQIs): history, models, attempts and perspectives. Rev Environ. Sci. Biotechnol., 22, 349–395.
- 6. Chigor V.N., Umoh V.J., Okuofu C.A., Ameh J.B., Igbinosa E.O., Okoh A.I. 2012. Water quality assessment: surface water sources used for drinking and irrigation in Zaria, Nigeria are a public health hazard. Environ Monit Assess, 184, 3389–3400.
- 7. Chowdury M.S.U., Emran T.B., Ghosh S., Pathak A., Alam Mohd.M., Absar N., Andersson K., Hossain M.S. 2019. IoT based real-time river water quality monitoring system. Procedia Computer Science 155. The 16th International Conference on Mobile Systems and Pervasive Computing (MobiSPC 2019),The 14th International Conference on Future Networks and Communications (FNC-2019),The 9th International Conference on Sustainable Energy Information Technology, 161–168.
- 8. Durkowski T., Jarnuszewski G. 2015. Changes in quality of surface and ground waters during implementation of nitrates directive in selected agricultural River Basin of Western Pomerania. Inż. Ekolog., 43, 122–130.
- 9. Dzhumelia E., Spodaryk O. 2022. The possibility of post-industrial landscapes reclamation based on the study of soil quality indicators and variance analysis. In: . 2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT). Lviv, Ukraine: IEEE., p. 369–372. https://ieeexplore.ieee.org/document/10000800/
- 10. Gaagai A., Aouissi H., Bencedira S., Hinge G., Athamena A., Heddam S., Gad M., Elsherbiny O., Elsayed S., Eid M., Ibrahim H. 2023. Application of water quality indices, machine learning approaches, and GIS to identify groundwater quality for irrigation purposes: a case study of Sahara Aquifer, Doucen Plain, Algeria. Water, 15, 289.
- 11. Garg V. 2018. Assessment of water quality using principal component analysis and cluster analysis for River Markanda, India. IJRASET, 6, 3240–3246.
- 12. Giri S. 2021. Water quality prospective in twenty first century: Status of water quality in major river basins, contemporary strategies and impediments: A review. Environmental Pollution, 271, 116332.
- 13. Gopchak I., Kalko A., Basiuk T., Pinchuk O., Gerasimov I., Yaromenko O., Shkirynets V. 2020. Assessment of surface water pollution in Western Bug River within the cross-border section of Ukraine. Journal of Water and Land Development, 97–104.
- 14. Havrys A., Yakovchuk R., Pekarska O., Tur N. 2023. Visualization of fire in space and time on the basis of the method of spatial location of fire-dangerous areas. Ecol. Eng. Environ. Technol., 24, 28–37.
- 15. Havrysh V.I., Kolyasa L.I., Ukhanska O.M., Loik V.B. 2017. Determination of temperature field in thermally sensitive layered medium with inclusions. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu,76–82.
- 16. Jannat N., Mottalib Md.A., Alam M.N. 2019. Assessment Of physicochemical properties of surface water Of Mokeshbeel, Gazipur, Bangladesh. ESCR, 2, 1–6.
- 17. Kachan S.I., Salapak V.M., Nahurskiy O.A., Pirko I.B. 2018. Control of radiation sensitivity of the oxygen-containing fluorite crystals. Acta Phys. Pol. A., 133, 824–828.
- 18. Kale A., Bandela N., Kulkarni J., Sahoo S.K., Kumar A. 2021. Hydrogeochemistry and multivariate statistical analysis of groundwater quality of hard rock aquifers from Deccan trap basalt in Western India. Environ Earth Sci, 80, 288.
- 19. Kieu L.D., Quoc P.N. 2024. Spatial and temporal analysis of surface water pollution indices using statistical methods. Civ Eng J, 10, 1828–1841.
- 20. Kothari V., Vij S., Sharma S., Gupta N. 2021. Correlation of various water quality parameters and water quality index of districts of Uttarakhand. Environmental and Sustainability Indicators, 9, 100093.
- 21. Mahinoor Islam Tonmoy. 2024. Water quality assessment of Jagannath Hall Pond, University of Dhaka. https://rgdoi.net/10.13140/RG.2.2.24964.74884
- 22. Ministry of Environmental Protection and Natural Resources of Ukraine. 2021. On the approval of Methodological recommendations for the development of standards for the maximum permissible discharge of pollutants into water bodies with return waters. Official website of the Parliament of Ukraine. https://zakon.rada.gov.ua/go/v0173926-21
- 23. Mokryi V., Petrushka I., Dyakiv V., Dzhumelia E., Salamon I. 2023. Information supply of hydrotechnical reconstruction concept of Stebnyk Tailings Storage (Ukraine). Ecol. Eng. Environ. Technol., 24, 120–130.
- 24. Nayak J., Singh R., Ganguly R. 2024. Assessment of water quality in terms of the water quality index. In: Yadav, AK, Yadav, K, Singh, VP, editors. Integrated Management of Water Resources in India: A Computational Approach. Cham: Springer Nature Switzerland. Water Science and Technology Library Vol. 129, p. 105–120. https://link.springer.com/10.1007/978-3-031-62079-9_6
- 25. Olatinwo S.O., Joubert T.-H. 2024. Water quality assessment tool for on-site water quality monitoring. IEEE Sensors J., 24, 16450–16466.
- 26. Phan C.N., Strużyński A., Kowalik T. 2023. Correlation between hydrochemical component of surface water and groundwater in Nida Valley, Poland. J. Ecol. Eng., 24, 167–177.
- 27. Phan C.N., Strużyński A., Kowalik T. 2024. Changes in physicochemical indicators of water resulting from river activities. Case Study in Nida Valley, Poland. J. Ecol. Eng., 25, 182–194.
- 28. Pohrebennyk V., Dzhumelia E. 2020. Environmental assessment of the impact of tars on the Territory of the Rozdil State Mining and Chemical Enterprise “Sirka” (Ukraine). In: Królczyk, GM, Wzorek, M, Król, A, Kochan, O, Su, J, Kacprzyk, J, editors. Sustainable Production: Novel Trends in Energy, Environment and Material Systems. Cham: Springer International Publishing. Studies in Systems, Decision and Control Vol. 198, p. 201–214. http://link.springer.com/10.1007/978-3-030-11274-5_13
- 29. Qadem Z., Abduljaleel Y., Amiri M., Qadem A., Lasri M., Obda O., Pizzo H., Salem A. 2024. Identification of optimal groundwater storage sites in a Semi-Arid Region: A GIS-Based Analytic Hierarchy Process (AHP) Approach. https://www.researchsquare.com/article/rs-4139848/v1
- 30. Uddin M.G., Nash S., Rahman A., Olbert A.I. 2022. A comprehensive method for improvement of water quality index (WQI) models for coastal water quality assessment. Water Research, 219, 118532.
- 31. WHO. 2023. Guidelines for drinking-water quality: fourth edition incorporating the first and second addenda. https://www.who.int/publications/i/item/9789240045064
- 32. Zhang T., Cai W., Li Y., Geng T., Zhang Z., Lv Y., Zhao M., Liu J. 2018. Ion chemistry of groundwater and the possible controls within Lhasa River Basin, SW Tibetan Plateau. Arab J Geosci, 11, 510.
- 33. Zhou C., Boyko T., Ruda M., Shybanova A., Dzhumelia E., Kochan O., Levkiv M. 2024. Stability Indicator for defining environmental and protective requirements for landscape ecosystems. Journal of Environmental Engineering and Landscape Management, 32, 57–71.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-462e4eca-53c4-404d-b858-fa15ff475a8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.