Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
One of the most interesting topics in social network science are social groups, i.e. their extraction, dynamics and evolution. One year ago the method for group evolution discovery (GED) was introduced. The GED method during extraction process takes into account both the group members quality and quantity. The quality is reflected by user importance measure. In this paper the influence of different user importance measures on the results of the GED method is examined and presented. The results indicate that using global measures like social position (page rank) allows to achieve more precise results than using local measures like degree centrality or no measure at all.
Rocznik
Tom
Strony
295--305
Opis fizyczny
Bibliogr. 305 poz.
Twórcy
autor
- Institute of Informatics, Wrocław University of Technology
autor
- Institute of Informatics, Wrocław University of Technology
autor
- Institute of Informatics, Wrocław University of Technology
Bibliografia
- [1] Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Trans. Knowl. Discov. Data. 3, 4, Article 16, 2009, 36 pages
- [2] Bródka P., Musiał K., Kazienko P.: A Performance of Centrality Calculation in Social Networks. In Proceedings of the 2009 International Conference on Computational Aspects of Social Networks (CASON '09). IEEE Computer Society, Washington, DC, USA, 2009, 24-31.
- [3] Bródka P., Saganowski P., Kazienko P.: GED: The Method for Group Evolution Discovery in Social Networks, Social Network Analysis and Mining, 2012, DOI:10.1007/s13278-012-0058-8
- [4] Chakrabarti D, Kumar R, Tomkins A, Evolutionary Clustering, KDD 2006, ACM, Philadelphia.
- [5] Lin, Y.R., Chi, Y., Zhu, S., Sundaram, H., Tseng, B.L. FacetNet: A Framework forAnalyzing Communities and Their Evolutions in Dynamic Networks, WWW 2008, ACM, 2008, pp. 685-694.
- [6] Musiał K.., Kazienko P., Bródka P.: User position measures in social networks. In Proceedings of the 3rd Workshop on Social Network Mining and Analysis (SNA-KDD '09). ACM, New York, NY, USA, , Article 6 , 2009, 9 pages.
- [7] Palla, G., Barabási, A.L., Vicsek, T.: Quantifying social group evolution. Nature 446, 2007, 664-667.
- [8] Sun J, Papadimitriou S, Yu P.S, Faloutsos C, GraphScope: Parameter-free Mining ofLarge Time-evolving Graphs. KDD, ACM, 2007, 687-696.
- [9] Wasserman S., Faust K., Social network analysis: Methods and applications, New York: Cambridge University Press, 1994.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46226b29-ae15-4dd3-9549-aecd0d44deef