Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
To evaluate the quality of watercourses in the Western part of Carpathians from a hydro-chemical perspective, a systematic approach is required. This involves gradually excluding factors that contribute to the washing, mixing, and transportation of contaminants in the watercourse pathway. The model that considers spatial dependencies by autoregression was implemented in this study to determine the correlation between hydrodynamic and physico-chemical characteristics of waters at surface in different groups and forms of catchment use. The surface water at forested areas had the maximum average shear stress of 0.178 N∙m-2. The watercourse at sustained grassland had the maximum average Reynolds number (Re) of 23,654 and the minimum number of 0.426 at arable lands. Spatial autoregression analysis revealed space-time relations in various measurement points. When constructing the space-physical model, it is important to consider the influence of hydraulic characteristic parameters on the generation of physicochemical indicators in the flysch basin. Specifically, it may be beneficial to take into account the turbulent diffusion coefficient. The autoregression analysis demonstrated that for the ions P-PO43- and K+ in surface water on cropland and for total iron and the cation K+ on grassland (p < 0.05), the turbulent diffusion coefficient proved to be of great importance. The study did not identify any physicochemical dependency for woodland surface waters. The findings can be utilised to create an erosion model that considers the contribution of material supply in a catchment area, specifically from weathered Carpathian flysch or surface runoff, to the alimentation of alluvial deposits.
Wydawca
Czasopismo
Rocznik
Tom
Strony
115--127
Opis fizyczny
Bibliogr. 89 poz., fot., rys., tab., wykr.
Twórcy
autor
- Agriculture University of Krakow, Faculty of Environmental Engineering and Land Surveying, al. Mickiewicza 24/28, 30-059 Kraków, Poland
autor
- Institute of Technology and Life Sciences – National Research Institute, Falenty, al. Hrabska 3, 05-090 Raszyn, Poland
autor
- Krakow University of Economics, College of Public Economy and Administration, ul. Rakowicka 27, 31-510 Kraków, Poland
autor
- Agriculture University of Krakow, Faculty of Environmental Engineering and Land Surveying, al. Mickiewicza 24/28, 30-059 Kraków, Poland
autor
- AGH University of Krakow, Oil and Gas Faculty, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- Anderson, T.W. and Darling, D.A. (1954) “A test of goodness-of-fit,” Journal of the American Statistical Association, 49, 268, pp. 765–769. Available at: https://doi.org/10.2307/2281537.
- Andersson, H. et al. (2015) “The role of subsoil properties as a source or sink for phosphorus leaching,” Journal of Environmental Quality, 44(2), pp. 535–544. Available at: https://doi.org/10.2134/jeq2014.04.0186.
- Arienzo, M. et al. (2012) “The relative effects of sodium and potassium on soil hydraulic conductivity and implications for winery wastewater management,” Geoderma, 173–174, pp. 303–310. Available at: https://doi.org/10.1016/j.geoderma.2011.12.012.
- Assouline, S. et al. (2015) “Balancing water scarcity and quality for sustainable irrigated agriculture,” Water Resources Research, 51, pp. 3419–3436. Available at: https://doi.org/10.1002/2015WR017071.
- Bakker, M.M. et al. (2008) “The response of soil erosion and sediment export to land-use change in four areas of Europe: the importance of landscape pattern,” Geomorphology, 98, pp. 213–226. Available at: https://doi.org/10.1016/j.geomorph.2006.12.027.
- Bartlett, M.S. (1950) “Tests of significance in factor analysis,” British Journal of Psychology, 3 (Part II), pp. 77–85.
- Bellver-Domingo, A. and Hernández-Sancho, F. (2018) “Environmental benefit of improving wastewater quality: A shadow proces approach for sensitive areas,” Water Economics and Policy, 4(02), 1750008. Available at: https://doi.org/10.1142/S2382624X17500084.
- Bo, W. et al. (2017) “Influence of land use and point source pollution on water quality in a developed region: A case study in Shunde, China,” International Journal of Environmental Research and Public Health, 15(1), 51. Available at: https://doi.org/10.3390/ijerph15010051.
- Brański, J. (1968) “Oznaczanie ilości unosin metodą wagową bezpośrednio przy użyciu sączków [Determination of suspended load by direct weight method using filters],” Prace PIHM, 94, pp. 13–21.
- Brański, J. (1975) “Ocena denudacji dorzecza Wisły na podstawie wyników pomiarów rumowiska unoszonego [Assessment of denudation in the Vistula River Basin based on the results of suspended sediment measurements],” Prace IMGW, 6, pp. 5–58.
- Brański, J. (1990) Instrukcja wykonywania i opracowania pomiarów rumowiska unoszonego [Instructions for performing and processing measurements of suspended sediment]. Warszawa: Instytut Meteorologii i Gospodarki Wodnej.
- Bryndal, T. (2014) Identyfikacja małych zlewni podatnych na formowanie gwałtownych wezbrań w Karpatach Polskich [Identification of small catchments prone to flash flood generation in the Polish Carpathians]. Kraków: Wydawnictwo Naukowe UP.
- Bu, H. et al. (2017) “Sources and fate of nitrate in the Haicheng River basin in Northeast China using stable isotopes of nitrate” Ecological Engineering, 98, pp. 105–113. Available at: https://doi.org/10.1016/j.ecoleng.2016.10.052.
- Comino, J.R. et al. (2016) “Quantitative comparison of initial soil erosion processes and runoff generation in Spanish and German vineyards,” Science of the Total Environment, 565, pp. 1165–1174. Available at: https://doi.org/10.1016/j.scitotenv.2016.05.163.
- Dalbianco, L. et al. (2017) “Sampling strategies to estimate suspended sediment concentration for turbidimeter calibration,” Revista Brasileira de Engenharia Agricola e Ambiental, 21(12), pp. 884–889. Available at: https://doi.org/10.1590/1807-929/agriambi.v21n12p884-889.
- Dash, A. et al. (2015) “Evaluation of water quality of local streams and Baitarani River in Joda area of Odisha, India,” International Journal of Current Research, 7(3), pp. 13559–13568.
- Effendi, H., Muslimah, S. and Permatasari, P.A. (2018) “Relationship between land use and water quality in Pesanggrahan River,” IOP Conference Series: Earth and Environmental Science, 149, 012022. Available at: https://doi.org/10.1088/1755-1315/149/1/012022.
- Fu, J. et al. (2014) “Heavy metals in surface sediments of the Jialu River, China: their relations to environmental factors,” Journal of Hazardous Materials, 270, pp. 102–109. Available at: https://doi.org/10.1016/j.jhazmat.2014.01.044.
- Gernez, P. et al. (2015) “Toward Sentinel-2 high resolution remote sensing of suspended particulate matter in very turbid waters: SPOT4 (Take 5) experiment in the Loire and Gironde estuaries,” Remote Sensing, 7(8), pp. 9507–9528. Available at: https://doi.org/10.3390/rs70809507.
- Geurts, J.J. et al. (2009) “Interacting effects of sulphate pollution, sulphide toxicity and eutrophication on vegetation development in fens: a mesocosm experiment,” Environmental Pollution, 157 (7), pp. 2072–2081. Available at: https://doi.org/10.1016/j.en-vpol.2009.02.024.
- Gil, E. and Kotarba, A. (1977) “Model of slide slope evolution in flysch mountains (an example draw from the Polish Carpathians),” Catena, 4(3), pp. 233–248. Available at: https://doi.org/10.1016/ 0341-8162(77)90026-1.
- Gordon, N.D. et al. (2007) Stream hydrology. An introduction for ecologists. London: Wiley.
- Griffith, A.D. (2005) “Effective geographic sample size in the presence of spatial autocorrelation,” Annals of the Association of American Geographers, 95(4), pp. 740–760. Available at: https://doi.org/10.1111/j.1467-8306.2005.00484.x.
- Grochowska, J. (2016) “Spływ powierzchniowy wapnia, magnezu, żelaza, manganu oraz azotu i fosforu ze zlewni górnej Pasłęki [The surface runoff of calcium, magnesium, iron, manganese, nitrogen and phosphorus from the upper Pasłęka river catchment],” Woda-Środowisko-Obszary Wiejskie, 16(4(56)), pp. 33–42.
- Hair, J. et al. (1995) Multivariate data analysis. 4th ed. New Jersey: Prentice-Hall Inc.
- Halecki, W. (2015) “Wskaźniki jakości gleb i wód powierzchniowych [Soil and surface water quality indicators],” Wszechświat, 116(10–12), pp. 267–269.
- Halecki, W. et al. (2017) “Applying an Artificial Neural Network (ANN) to assess soil salinity and temperature variability in agricultural areas of a mountain catchment,” Polish Journal of Environmental Studies, 26(6), pp. 2545–2554. Available at: https://doi.org/10.15244/pjoes/70925.
- Halecki, W. et al. (2019) “Evaluating the applicability of MESS (matrix exponential spatial specification) model to assess water quality using GIS technique in agricultural mountain catchment (Western Carpathian),” Environmental Monitoring and Assessment, 191(1), 26. Available at: https://doi.org/10.1007/s10661-018-7137-x.
- Halecki, W., Kruk, E. and Ryczek, M. (2018a) “Estimations of nitrate nitrogen, total phosphorus flux and suspended sediment concentration (SSC) as indicators of surface-erosion processes using an ANN (Artificial Neural Network) based on geomorphological parameters in mountainous catchments,” Ecological Indicators, 91C, pp. 461–469. Available at: https://doi.org/10.1016/j.ecolind.2018.03.072.
- Halecki, W., Kruk, E. and Ryczek, M. (2018b) “Evaluation of water erosion at a mountain catchment in Poland using the G2 model,” Catena, 164, pp. 116–124. Available at: https://doi.org/10.1016/j.catena.2018.01.014.
- Halecki, W., Kruk, E. and Ryczek, M. (2018c) “Loss of topsoil and soil erosion by water in agricultural areas: A multi-criteria approach for various land use scenarios in the Western Carpathians using a SWAT model,” Land Use Policy, 73, pp. 363–372. Available at: https://doi.org/10.1016/j.landusepol.2018.01.041.
- Hall, K.K. et al. (2014) “Application of multivariate statistical methodology to model factors influencing fate and transport of fecal pollution in surface waters,” Journal of Environmental Quality, 43(1), pp. 358–370. Available at: https://doi.org/10.2134/jeq2013.05.0190.
- Hu, B. et al. (2015) “Seasonal variability and flux of particulate trace elements from the Yellow River: impacts of the anthropogenic flood event,” Marine Pollution Bulletin, 91(1), pp. 35–44. Available at: https://doi.org/10.1016/j.marpolbul.2014.12.030.
- Huan, G. (2011) “Dual behavior of suspended sediment concentration in a regulated river,” World Journal of Mechanics, 1(3), pp. 115–121. Available at: http://dx.doi.org/10.4236/wjm.2011.13016.
- Izmaiłow, B., Kamykowska, M. and Krzemień, K. (2008) “Geomorfologiczna rola katastrofalnych wezbrań w transformacji górskiego systemu korytowego na przykładzie Wilszni (Beskid Nicki) [The land forming role of catastrophic floods in the transformation of a mountain river channel system using the Wilsznia River example (Beskid Niski Mountains, Poland)],” in B. Izmaiłow (ed.) Przyroda – Człowiek – Bóg. Kraków: Instytut Geografii i Gospodarki Przestrzennej UJ, pp. 69–81.
- Jarocki, W. (1957) Ruch rumowiska w ciekach. Badanie oraz obliczanie ilości materiału wleczonego i unoszonego [Debris movement in streams. Testing and calculating the amount of material dragged and lifted]. Gdynia: Wyd. Morskie.
- Jarque, C.M. and Bera, A.K. (1987) “A test for normality of observations and regression residuals,” International Statistical Review, 55, pp. 163–172. Available at: https://doi.org/10.2307/1403192.
- Juahir, H. et al. (2010) “Spatial assessment of Langat river water quality using chemometrics,” Journal of Environmental Monitoring, 12, pp. 287–295. Available at: https://doi.org/10.1039/B907306J.
- Kim, H. et al. (2012) “Autonomous water sampling for long-term monitoring of trace metals in remote environments,” Environmental Science & Technology, 46(20), pp. 11220–11226. Available at: https://doi.org/10.1021/es3006404.
- Levene, H. (1960) “Robust tests for equality of variances,” in I. Olkin et al. (eds.) Contributions to probability and statistics: Essays in honor of Harold Hotelling. Stanford University Press, pp. 278–292.
- Liao, J. et al. (2016) “Distribution and migration of heavy metals in soil and crops affected by acid mine drainage: public health implications in Guangdong Province, China,” Ecotoxicology and Environmental Safety, 124, pp. 460–469. Available at: https://doi.org/10.1016/j.ecoenv.2015.11.023.
- Loga, M. (ed.) (2016) „Wody pod presją” – praktyczny kurs oceny presji obiektów gospodarki komunalnej na wody powierzchniowe [“Waters under pressure” – a practical course on assessing the pressure of municipal facilities on surface waters]. Warszawa: Politechnika Warszawska.
- MacCallum, R. (1983) “A comparison of factor analysis programs in SPSS, BMDP, and SAS,” Psvchometrika, 48(2), pp. 223–231. Available at: https://doi.org/10.1007/BF02294017.
- Mahjouri, N. and Kerachian, R. (2011) “Revising river water quality monitoring networks using discrete entropy theory: the Jajrood River experience,” Environmental Monitoring and Assessment, 175(1–4), pp. 291–302. Available at: https://doi.org/10.1007/s10661-010-1512-6.
- Matta, G. et al. (2017) “Assessment of physicochemical characteristics of Ganga Canal water quality in Uttarakhand,” Environment, Development and Sustainability, 19(2), pp. 419–431. Available at: https://doi.org/10.1007/s10668-015-9735-x.
- Mazur, Z. and Pałys, S. (1992) “Erozja wodna w zlewni lessowej na Lubelszczyźnie w latach 1956–1991 [Water erosion in the loess catchment in the Lublin area between 1956 and 1991],” Annales Universitatis Mariae Curie-Skłodowska, Sectio E, 47, pp. 219–229.
- Misaghi, F. et al. (2017) “Introducing a water quality index for assessing water for irrigation purposes: A case study of the Ghezel Ozan River,” Science of the Total Environment, 589, pp. 107–116. Available at: https://doi.org/10.1016/j.scitotenv.2017.02.226.
- Moore, J.N. and Langner, H.W. (2012) “Can a river heal itself? Natural attenuation of metal contamination in river sediment,” Environmental Science & Technology, 46(5), pp. 2616–2623. Available at: https://doi.org/10.1021/es203810j.
- Naubi, I. et al. (2016) “Effectiveness of water quality index for monitoring Malaysian River water quality,” Polish Journal of Environmental Studies, 25(1), pp. 231–239. Available at: https://doi.org/10.15244/pjoes/60109.
- Operacz, A. et al. (2018) “Therapeutic water in the Poprad Valley – the Newest Development in the Polish Outer Carpathians,” Polish Journal of Environmental Studies, 27(3), pp. 1207–1217. Available at: https://doi.org/10.15244/pjoes/76036.
- Oster, J.D., Sposito, G. and Smith, C.J. (2016) “Accounting for potassium and magnesium in irrigation water quality assessment,” California Agriculture, 70(2), pp. 71–76. Available at: https://doi.org/10.3733/ca.v070n02p71.
- Padmalal, D. et al. (2012) “Water quality and dissolved inorganic fluxes of N, P, SO 4 , and K of a small catchment river in the Southwestern Coast of India,” Environmental Monitoring and Assessment, 184(3), pp. 1541–1557. Available at: https://doi.org/10.1007/s10661-011-2059-x.
- Panagos, P. et al. (2015) “The new assessment of soil loss by water erosion in Europe,” Environmental Science & Policy, 54, pp. 438–444. Available at: https://doi.org/10.1016/j.envsci.2015.08.012.
- Parmar, D.L. and Keshari, A.K. (2012) “Sensitivity analysis of water quality for Delhi stretch of the River Yamuna, India,” Environmental Monitoring and Assessment, 184(3), pp. 1487–1508. Available at: https://doi.org/10.1007/s10661-011-2055-1.
- Priess, J.A. et al. (2015) “Impacts of agricultural land-use dynamics on erosion risks and options for land and water management in Northern Mongolia,” Environmental Earth Sciences, 73(2), pp. 697–708. Available at: https://doi.org/10.1007/s12665-014-3380-9.
- Rangel, T.F.L.V.B., Diniz-Filho, J.A.F. and Bini, L.M. (2010) “SAM: a comprehensive application for Spatial Analysis in Macroecology,” Ecography, 33, pp. 46–50. Available at: http://www.jstor.org/stable/20696328.
- Saito, M., Hayamizu, K. and Okada, T. (2005) “Temperature dependence of ion and water transport in perfluorinated ionomer membranes for fuel cells,” The Journal of Physical Chemistry B, 109(8), pp. 3112–3119. Available at: https://doi.org/10.1021/jp045624w.
- Sapek, A. (2008) “Chlorki w wodzie na obszarach wiejskich [Chlorides in water from rural areas],” Woda-Środowisko-Obszary Wiejskie, 8(22), pp. 263–281.
- Shapiro, S.S. and Wilk, M.B. (1965) “An analysis of variance test for normality (complete samples),” Biometrika, 52 (3–4), pp. 591–611. Available at: https://doi.org/10.1093/biomet/52.3-4.591.
- Shi, W., Xia, J. and Zhang, X. (2016) “Influences of anthropogenic activities and topography on water quality in the highly regulated Huai River basin, China,” Environmental Science and Pollution Research, 21, pp. 21460–21474. Available at: https://doi.org/10.1007/s11356-016-7368-8.
- Shigut, A.D. et al. (2017) “Assessment of physico-chemical quality of borehole and spring water sources supplied to Robe Town, Oromia region, Ethiopia,” Applied Water Science, 7(1), pp. 155–164. Available at: https://doi.org/10.1007/s13201-016-0502-4.
- Smolska, E. (2010) “Spływ wody i erozja gleby na piaszczystym stoku w obszarze młodo glacjalnym – pomiary poletkowe (Pojezierze Suwalskie, Polska NE) [Runoff and soil erosion on sandy slope in the last-glacial area – plots measurements (Suwałki Lakeland, NE Poland)],” in E. Smolska, J. Rodzik (eds.) Procesy erozyjne na stokach użytkowanych rolniczo (metody badań, dynamika i skutki) [Erosion processes on agricultural slopes (research methods, dynamics and effects)]. Prace i Studia Geograficzne, 45, pp. 197–214.
- Smoroń, S. (2012) “Zagrożenia eutrofizacją wód powierzchniowych wyżyn lessowych małopolski [The risk of surface waters eutrophication in loessial uplands of Małopolska],” Woda-Środowisko-Obszary Wiejskie, 12(1(37)), pp. 181−191.
- Starkel, L. (2006) “Geomorphic hazards in the Polish Flysch Carpathians,” Studia Geomorphologica Carpatho-Balcanica, 40, pp. 7–19.
- Starkel, L. (2011) “Złożoność czasowa i przestrzenna opadów ekstremalnych – ich efekty geomorfologiczne i drogi przeciw-działania im [Temporal and spatial complexity of extreme rainfalls – their geomorphological effects and ways of counteract them],” Landform Analysis, 15, pp. 65–80.
- Starkel, L., Pietrzak, M. and Łajczak, A. (2007) “Wpływ zmian użytkowania ziemi i wzrostu częstotliwości ekstremalnych opadów na obieg wody i erozję oraz ochronę zasobów przyrodniczych Karpat [Impact of land use changes and increasing frequency of heavy rainfall on circulation of water, soil erosion and protection of natural resources in the Carpathians],” Problemy Zagospodarowania Ziem Górskich, 54, pp. 19–30.
- Stephens, M.A. (1986) “Tests based on EDF statistics,” in R.B. D’Agostino, M.A. Stephens (eds.) Goodness-of-fit techniques. New York: Marcel Dekker, pp. 97–194.
- Szatten, D. (2016) “The estimation of suspended sediment transport using nefelometric and traditional measurements of turbidity of water on an example of the cascade lower Brda River,” Journal of Education, Health and Sport, 6(1), pp. 64–72. Available at: https://doi.org/10.12775/PPS.2015.02.01.005.
- Szostakiewicz-Hołownia, M. (2012) “Chemizm wód źródlanych zlewni Potoku Macelowego w Pieninach [The chemistry of springs water of the Macelowy stream catchment in the Pieniny Mts.],” Pieniny – Przyroda i Człowiek, 12, pp. 33–41.
- Szüle, B. (2016) Introduction to data analysis. Budapest: Corvinus University of Budapest.
- Tabachnick, B.G. and Fidell, L.S. (2007) Using multivariate statistics. Boston: Pearson Education Inc.
- Tasdighi, A., Arabi, M. and Osmond, D.L. (2017) “The relationship between land use and vulnerability to nitrogen and phosphorus pollution in an urban watershed,” Journal of Environmental Quality, 46, pp. 113–122. Available at: https://doi.org/10.2134/jeq2016.06.0239.
- Teixeira, Z. and Marques, J.C. (2016) “Relating landscape to stream nitrate-N levels in a coastal eastern-Atlantic watershed (Portugal),” Ecological Indicators, 61, pp. 693–706. Available at: https://doi.org/10.1016/j.ecolind.2015.10.021.
- Trivedi, R.C. (2010) “Water quality of Ganga River – An overview,” Aquatic Ecosystem Health and Management, 13(4), pp. 347–351. Available at: https://doi.org/10.1080/14634988.2010.528740.
- Ulén, B. et al. (2012) “Trends in nutrient concentrations in drainage water from single fields under ordinary cultivation,” Agriculture, Ecosystems & Environment, 151, pp. 61–69. Available at: https://doi.org/10.1016/j.agee.2012.02.005.
- Vadde, K.K. et al. (2018) “Assessment of water quality and identification of pollution risk locations in Tiaoxi River (Taihu Watershed), China,” Water, 10(2), 183. Available at: https://doi.org/10.3390/w10020183.
- Vallejos, R. and Osorio, F. (2014) “Effective sample size of spatial process models,” Spatial Statistics, 9, pp. 66–92. Available at: https://doi.org/10.1016/j.spasta.2014.03.003.
- Vincent-Akpu, I.F. et al. (2015) “Assessment of physico-chemical properties and metal contents of water and sediments of Bodo Creek, Niger Delta, Nigeria,” Toxicological & Environmental Chemistry, 97(2), pp. 135–144. Available at: https://doi.org/10.1080/02772248.2015.1041526.
- Wang, R. et al. (2014) “Modeling the risk of nitrate leaching and nitrate runoff loss from intensive farmland in the Baiyangdian Basin of the North China Plain,” Environmental Earth Sciences, 72, pp. 3143–3157. Available at: https://doi.org/10.1007/s12665-014-3219-4.
- Weber, E. et al. (2014) “Recycled water causes no salinity or toxicity issues in Napa vineyards,” California Agriculture, 68(3), pp. 59–67. Available at: https://doi.org/10.3733/ca.v068n03p59.
- Williams, B., Brown, T. and Onsman, A. (2010) “Exploratory factor analysis: A five-step guide for novices,” Australasian Journal of Paramedicine, 8(3), pp. 1–13. Available at: https://doi.org/10.33151/ajp.8.3.93.
- Wojtasik, M. and Szatten, D. (2014) “Bilans dostawy rumowiska w wyniku erozji wodnej dla zlewni rzeki Brdy określony za pomocą modelu USLE [The balance of sediment supply by water erosion determined by USLE model on the catchment of Brda river],” Journal of Health Sciences, 4(11), pp. 61–70.
- Wolman, M.G. (1954) “A method of sampling coarse river-bed material,” Transactions of the American Geophysical Union EOS, 35, pp. 951–956. Available at: https://doi.org/10.1029/TR035i006p00951.
- Wu, J., Zheng, C. and Chien, C.C. (2005) “Cost-effective sampling network design for contaminant plume monitoring under general hydrogeological conditions,” Journal of Contaminant Hydrology, 77(1–2), pp. 41–65. Available at: https://doi.org/10.1016/j.jcon-hyd.2004.11.006.
- Xu, Y. et al. (2014) “The source of natural and anthropogenic heavy metals in the sediments of the Minjiang River estuary (SE China): implications for historical pollution,” Science of the Total Environment, 493, pp. 729–736. Available at: https://doi.org/10.1016/j.scitotenv.2014.06.046.
- Yadav, K.K. et al. (2015) “Water quality assessment of Pahuj River using water quality index at Unnao Balaji, M.P., India,” The International Research Journal of Applied and Basic Sciences, 19(1), pp. 241–250.
- Yang, X. et al. (2017) “Spatial regression and prediction of water quality in a watershed with complex pollution sources,” Scientific Reports, 7, 8318. Available at: https://doi.org/10.1038/s41598-017-08254-w.
- Zhang, Q. et al. (2017) “The opposite effects of sodium and potassium cations on water dynamics,” Chemical Science, 8(2), pp. 1429–1435. Available at: https://doi.org/10.1039/C6SC03320B.
- Ziadat, A.H. et al. (2015) “Biomonitoring of heavy metals in the vicinity of copper mining site at Erdenet, Mongolia,” Journal of Applied Sciences, 15(11), pp. 1297–1304. Available at: https://doi.org/10.3923/jas.2015.1297.1304.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-461cb12b-08c3-47a8-885a-b60cc754a034