Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Chitosan/CuO nanocomposites (Chi/CuO) were prepared by facile and eco-friendly technique. The 2%w/v chitosan solution was mixed with 0.5 %w/w sodium tripolyphosphate (STPP), resulting in the formation of ionically crosslinked chitosan. The crosslinked chitosan was soaked in an aqueous solution containing 0.001, 0.01 or 0.1 mol/L CuSO4·5H2O for 24 hrs, in which the Cu2+ ions were absorbed into the chitosan network, forming as the chitosan/Cu2+ precursors. The chitosan/Cu2+ precursors were hydrothermally reacted in two different basic media, i.e. NaOH and NH4OH, at 100°C for 24 hrs, resulting in the nano-sized CuO crystals hydrothermally grew and embedded in the crosslinked chitosan matrix. The CuO grown in the NaOH possessed larger crystallite size and higher crystallinity than that in the NH4OH. In addition, the CuO crystallite size in the nanocomposites increased with the increase of initial concentration of Cu2+ starting agent due to the increase of Cu2+ quantity in the chitosan/Cu2+ precursors. The chitosan/CuO nanocomposites prepared by using 0.01 and 0.1 mol/L Cu2+ could exhibit the antibacterial activities after intimate contact with Staphylococcus aureus and Escherichia coli under JIS L 1902:1998 (Qualitative) test method, indicating their potential use as biocontrol agents.
Rocznik
Tom
Strony
311--316
Opis fizyczny
Bibliogr. 17 poz., rys., wykr., tab.
Twórcy
autor
- Department of Chemistry, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand
- Functional Nanostructured Materials Laboratory, College of Nanotechnology, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand
autor
- Functional Nanostructured Materials Laboratory, College of Nanotechnology, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand
Bibliografia
- [1] R.J. Cava, “Structural chemistry and the local charge picture of copper oxide superconductors”, Science, 247(4943), 656‒662 (1990).
- [2] N.L. Van, C. Ma, J. Shang, Y. Rui, S. Liu, and B. Xing, “Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton”, Chemosphere, 144, 661–670 (2016).
- [3] Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, and S. Yang, “CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications”, Prog. Mater. Sci, 60, 208‒337 (2014).
- [4] G. Ren, D. Hu, E.W.C. Cheng, M.A. Vargas-Reus, P. Reip, and R.P. Allaker, “Characterisation of copper oxide nanoparticles for antimicrobial applications”, Int. J. Antimicrob. Ag., 33, 587‒590 (2009).
- [5] S. Nations, M. Long, M. Wages, and J.D. Maul, “Subchronic and chronic developmental effects of copper oxide (CuO) nanoparticles on Xenopus laevis”, Chemosphere, 135, 166‒174 (2015).
- [6] J.F. Xu, W. Ji, Z.X. Shen, S.H. Tang, X.R. Ye, D.Z. Jia and X.Q. Xin, “Preparation and characterization of CuO nanocrystals”, J. Solid. State. Chem, 147, 516‒519 (1999).
- [7] K. Chen and D. Xue, “A chemical reaction controlled mechanochemical route to construction of CuO nanoribbons for high performance lithium-ion batteries”, Phys. Chem. Chem. Phys., 15, 19708‒19714 (2013).
- [8] S.J. Davarpanah, R. Karimian, V. Goodarzi, and F. Piri, “Synthesis of copper (II) oxide (CuO) nanoparticles and its application as gas sensor”, J. Appl. Biotechnol. Rep., 2, 329‒332 (2015).
- [9] C. Yang, F. Xiao, J. Wang, and X. Su, “Synthesis and microwave modification of CuO nanoparticles: Crystallinity and morphological variations, catalysis, and gas sensing”, J. Colloid. Interface. Sci., 435, 34‒42 (2014)
- [10] N.N. Mahmoud, J. Asim, and S. Numan, “Microwave synthesis of ultrathin, non-agglomerated CuO nanosheets and their evaluation as nanofillers for polymer nanocomposites”, J. Alloy. Compd. 680, 350‒358 (2016).
- [11] D. Han, H. Yang, C. Zhu and F. Wang, “Controlled synthesis of CuO nanoparticles using TritonX-100-based water-in-oil reverse micelles”, Powder. Technol. 185, 286‒290 (2008).
- [12] M. Zhang, X. Xu and M. Zhang, “Hydrothermal synthesis of sheaf-like CuO via ionic liquids”, Mater. Lett., 62, 385‒388 (2008).
- [13] J.G. Zhao, S.J. Liu, S.H. Yang, and S.G. Yang, “Hydrothermal synthesis and ferromagnetism of CuO nanosheets”, Appl. Surf. Sci., 257, 9678‒9681 (2011).
- [14] E.I. Rabea, M.E.T. Badawy, C.V. Stevens, G. Smagghe, and W. Steurbaut, “Chitosan as antimicrobial agent: applications and mode of action”, Biomacromolecules, 4, 1457‒1465 (2003).
- [15] J. Berger, M. Reist, J.M. Mayer, O. Felt, N.A. Peppas, and R. Gurny, “Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications”, Eur. J. Pharm. Biopharm, 57, 19‒34 (2004).
- [16] R. Jayakumar, D. Menon, K. Manzoor, S.V. Nair, and H. Tamura, “Biomedical applications of chitin and chitosan based nanomaterials – a short review”, Carbohydr. Polym., 82, 227‒232 (2010).
- [17] M.S. Hassan, T. Amna, O-B Yang, M.H. El-Newehy, S.S. Al-Deyab, and M-S Khil, “Smart copper oxide nanocrystals: Synthesis, characterization, electrochemical and potent antibacterial activity”, Colloids. Surf. B., 97, 201‒206 (2012).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-461ba00d-c49c-4201-846a-411723540367