PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Study of the lightning activity over Poland for different solar activity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The question of the connection between solar and thunderstorm activity is not new. The discussion among scientists began before the cosmic era. The correlations of the ground-based registration of the cosmic ray flux and meteorological observations have been performed since the 50s of the 20th century. The discussed problem is related to the influence of cosmic rays on the creation of clouds, particularly thunderstorm clouds. The intensity of the galactic cosmic ray flux is controlled by the density and velocity of the solar wind. The increase in the solar wind flux during high solar activity leads to decreasing galactic cosmic ray flux, but on the other hand, the solar activity creates solar cosmic rays. Using data from the PERUN system and the DEMETER satellite, we tried to estimate the connection between the thunderstorm activity in Poland and solar activity during the period of the DEMETER operational activity (2004-2010). The influence of thunderstorms on the ionosphere and its dependence on solar activity is also discussed. However, due to the short time interval of the available data covering an insignificant part of the solar cycle, close to the minimum activity, our findings are not fully conclusive. No correlation was found between the cosmic ray flux and lightning activity given by the number of the discharges. However, some of the most energetic lightning discharges in the analyzed period occurred close to the minimum of the solar activity and their appearance is discussed.
Słowa kluczowe
Rocznik
Strony
194--209
Opis fizyczny
Bibliogr. 20 poz., wykr.
Twórcy
autor
  • Space Research Centre, Polish Academy of Sciences, Warsaw, Poland
  • Satellite Remote Sensing Department, Institute of Meteorology and Water Management - National Research Institute , Cracow, Poland
  • Space Research Centre, Polish Academy of Sciences, Warsaw, Poland
  • Space Research Centre, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
  • Alvestad, J. (2012). Solar Cycles 21-24. http://www.solen.info/solar/solcycle_old.html.
  • Arnold, F. (2008). Atmospheric Ions and Aerosol Formation. Space Science Reviews, 137(1-4), 225-239. https://doi.org/10.1007/s11214-008-9390-8.
  • Berthelier, J. J., Godefroy, M., Leblanc, F., Malingre, M., Menvielle, M., Lagoutte, D., Brochot, J. Y., Colin, F., Elie, F., Legendre, C., Zamora, P., Benoist, D., Chapuis, Y., Artru, J., and Pfaff, R. (2006). ICE, the electric field experiment on DEMETER. Planetary and Space Science, 54(5), 456-471. https://doi.org/10.1016/j.pss.2005.10.016.
  • Carslaw, K. S., Harrison, R. G., and Kirkby, J. (2002). Cosmic Rays, Clouds, and Climate. Science, 298(5599), 1732-1737. https://doi.org/10.1126/science.1076964.
  • Chum, J., Kollárik, M., Kolmašová, I., Langer, R., Rusz, J., Saxonbergová, D., and Strhárský, I. (2021). Influence of Solar Wind on Secondary Cosmic Rays and Atmospheric Electricity. Frontiers in Earth Science, 9, 671801. https://doi.org/10.3389/feart.2021.671801.
  • Dwyer, J. R., and Uman, M. A. (2014). The physics of lightning. Physics Reports, 534(4), 147-241. https://doi.org/10.1016/j.physrep.2013.09.004.
  • Füllekrug, M., and Fraser-Smith, A. C. (2011). The Earth’s electromagnetic environment. Geophysical Research Letters, 38(21). https://doi.org/10.1029/2011GL049572.
  • Marsh, N., and Svensmark, H. (2003). Solar Influence on Earth’s Climate. Space Science Reviews, 107(1/2), 317-325. https://doi.org/10.1023/A:1025573117134.
  • McIntosh, S. W., Leamon, R. J., Krista, L. D., Title, A. M., Hudson, H. S., Riley, P., Harder, J. W., Kopp, G., Snow, M., Woods, T. N., Kasper, J. C., Stevens, M. L., and Ulrich, R. K. (2015). The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability. Nature Communications, 6(1), 6491. https://doi.org/10.1038/ncomms7491.
  • Mironova, I. A., Aplin, K. L., Arnold, F., Bazilevskaya, G. A., Harrison, R. G., Krivolutsky, A. A., Nicoll, K. A., Rozanov, E. V., Turunen, E., and Usoskin, I. G. (2015). Energetic Particle Influence on the Earth’s Atmosphere. Space Science Reviews, 194(1-4), 1-96. https://doi.org/10.1007/s11214-015-0185-4.
  • Parrot, M., Benoist, D., Berthelier, J. J., Błęcki, J., Chapuis, Y., Colin, F., Elie, F., Fergeau, P., Lagoutte, D., Lefeuvre, F., Legendre, C., Lévêque, M., Pinçon, J. L., Poirier, B., Seran, H.-C., and Zamora, P. (2006). The magnetic field experiment IMSC and its data processing onboard DEMETER: Scientific objectives, description and first results. Planetary and Space Science, 54(5), 441-455. https://doi.org/10.1016/j.pss.2005.10.015.
  • Parrot, M., Berthelier, J. J., Lebreton, J. P., Treumann, R., and Rauch, J. L. (2008). DEMETER Observations of EM Emissions Related to Thunderstorms. Space Science Reviews, 137(1-4), 511-519. https://doi.org/10.1007/s11214-008-9347-y.
  • Parrot, M., Sauvaud, J.-A., Soula, S., Pinçon, J.-L., and van der Velde, O. A. (2013). Ionospheric density perturbations recorded by DEMETER above intense thunderstorms. Journal of Geophysical Research: Space Physics, 118(8), 5169-5176. https://doi.org/10.1002/jgra.50460.
  • Ross, E., and Chaplin, W. J. (2019). The Behaviour of Galactic Cosmic-Ray Intensity During Solar Activity Cycle 24. Solar Physics, 294(1), 8. https://doi.org/10.1007/s11207-019-1397-7.
  • Rycroft, M. J., and Harrison, R. G. (2012). Electromagnetic atmosphere-plasma coupling: The global atmospheric electric circuit. Space Science Reviews, 168(1-4), 363-384. https://doi.org/10.1007/s11214-011-9830-8
  • Rycroft, M. J., Nicoll, K. A., Aplin, K. L., and Giles Harrison, R. (2012). Recent advances in global electric circuit coupling between the space environment and the troposphere. Journal of Atmospheric and Solar-Terrestrial Physics, 90-91, 198-211. https://doi.org/10.1016/j.jastp.2012.03.015.
  • Rycroft, M. J., and Odzimek, A. (2010). Effects of lightning and sprites on the ionospheric potential, and threshold effects on sprite initiation, obtained using an analog model of the global atmospheric electric circuit. Journal of Geophysical Research: Space Physics, 115(A6), n/a-n/a. https://doi.org/10.1029/2009JA014758.
  • Singh, A. K., Siingh, D., Singh, R. P., and Mishra, S. (2011). Electrodynamical Coupling of Earth’s Atmosphere and Ionosphere: An Overview. International Journal of Geophysics, 2011, 1-13. https://doi.org/10.1155/2011/971302.
  • Wilson, C. T. R. (1924). The Electric Field of a Thundercloud and Some of Its Effects. Proceedings of the Physical Society of London, 37(1), 32D-37D. https://doi.org/10.1088/1478- 7814/37/1/314.
  • Yu, F. (2002). Altitude variations of cosmic ray induced production of aerosols: Implications for global cloudiness and climate. Journal of Geophysical Research, 107(A7), 1118. https://doi.org/10.1029/2001JA000248.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46164e79-0d6d-4b7b-ba15-8ca4a38767ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.