PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Oxidation and hydrogen behaviur in Zr-2Mn alloy

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the present research was to determine the oxidation and hydrogenation behavior in the new Zr-2Mn alloy. The oxidation of alloy was performed at temperatures between 350°C and 900°C for 30 minutes. The hydrogen charging was made for 72 h at a current density 80 mA/cm2. The charged samples were heat treated at 400°C for 4 h to obtain a uniform hydrogen profile content across the sample. The oxidation resulted in an appearance of non-uniform oxide layers of thickness increasing with temperature. The surface damage was observed at higher temperatures 700 and 900°C. After charging with hydrogen followed by annealing no hydrides were found. The observed effect is evidence that the oxide layers may form effective barriers against hydrogen diffusion even if they are partially degraded. The absence of hydrides or hydride cracking may be caused by an absence in Zr-Mn alloys of such phase precipitates, which may trap diffusive hydrogen and initiate the hydrides. The positive influence of manganese on the formation of the thick oxide layer and relative resistance to delayed hydride cracking may be attributed to its affinity of oxygen, the ability to form thick and compact oxide layers during oxidation, the formation of solid solution in zirconium and no precipitates enhancing nucleation of hydrides.
Rocznik
Strony
37--48
Opis fizyczny
Bibliogr. 29 poz., rys., wykr., tab.
Twórcy
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Welding Engineering, 11/12 Narutowicza, 80-233 Gdańsk, Poland
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Welding Engineering, 11/12 Narutowicza, 80-233 Gdańsk, Poland
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Welding Engineering, 11/12 Narutowicza, 80-233 Gdańsk, Poland
autor
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Welding Engineering, 11/12 Narutowicza, 80-233 Gdańsk, Poland
autor
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Welding Engineering, 11/12 Narutowicza, 80-233 Gdańsk, Poland
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Welding Engineering, 11/12 Narutowicza, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Bair J., Asle Zaeem M., Tonks M.: A review on hydride precipitation in zirconium alloys. J. Nucl. Mater. 466 (2015) 12–20.
  • 2. Suman S., Khan M.K., Pathak M., Singh R.N., Chakravartty J.K.: Hydrogen in Zircaloy: Mechanism and its impacts. Intl. J. Hydrogen Energy 40 (2015) 5976–5994.
  • 3. Zielinski A., Sobieszczyk S.: Hydrogen-enhanced degradation and oxide effects in zirconium alloys for nuclear applications. Intl. J. Hydrogen Energy 36 (2011) 8619–8629.
  • 4. Baek J.H., Jeong Y.H.: Breakaway phenomenon of Zr-based alloys during a high-temperature oxidation. J. Nucl. Mater. 372 (2008) 152–159.
  • 5. Szoka A., Gajowiec G., Zieliński A., Serbinski W., Olive J.-M., Ossowska A.: Hydrogen degradation of pre-oxidixed zirconium alloys, Adv. Mater. Sci. 17 (2017) 5–21.
  • 6. Couet A., Motta A.T., Comstock R.J.: Hydrogen pickup measurements in zirconium alloys: Relation to oxidation kinetics, J. Nucl. Mater. 451 (2014) 1–13.
  • 7. Fernández G.E., Meyer G., Peretti H.A.: Analysis of the hydride formation kinetics of Zry-4, J. Alloys Compd. 330–332 (2002) 483–487.
  • 8. Kim Y.S., Ahn S.B., Cheong Y.M.: Precipitation of crack tip hydrides in zirconium alloys. J. Alloys Compd.. 429 (2007) 221–226.
  • 9. Cox B.: Hydrogen uptake during oxidation of zirconium alloys. J. Alloys Compd. 256 (1997) 244–246.
  • 10. Elmoselhi M.B.: Hydrogen uptake by oxidized zirconium alloys. J. Alloys Compd. 231 (1995) 716–721.
  • 11. Khatamian D., Ling V.C.: Hydrogen solubility limits in α- and β-zirconium. J. Alloys Compd. 253–254 (1997) 162–166.
  • 12. Chen W., Wang L., Lu S.: Influence of oxide layer on hydrogen desorption from zirconium hydride. J. Alloys Compd. 469 (2009) 142–145.
  • 13. Yamanaka S., Nishizaki T., Uno M., Katsura M.: Hydrogen dissolution into zirconium oxide. J. Alloys Compd. 293 (1999) 38–41.
  • 14. Allen T.R., Konings R.J.M., Motta A.T.: Corrosion of Zirconium Alloys, 1st ed., Elsevier Inc., 2012.
  • 15. Khatamian D.: Solubility and partitioning of hydrogen in metastable Zr-based alloys used in the nuclear industry. J. Alloys Compd. 293 (1999) 893–899.
  • 16. Cox B.: Hydrogen trapping by oxygen and dislocations in zirconium alloys. J. Alloys Compd. 256 (1997) L4–L7.
  • 17. Giroldi J.P., Vizcaíno P., Flores A.V., Banchik A.D.: Hydrogen terminal solid solubility determinations in Zr-2.5Nb pressure tube microstructure in an extended concentration range. J. Alloys Compd. 474 (2009) 140–146.
  • 18. Singh R.N., Mukherjee S., Gupta A., Banerjee S.: Terminal solid solubility of hydrogen in Zr-alloy pressure tube materials. J. Alloys Compd. 389 (2005) 102–112.
  • 19. Roustila A., Chêne J., Séverac C.: XPS study of hydrogen and oxygen interactions on the surface of the NiZr intermetallic compound. Intl. J. Hydrogen Energy 32 (2007) 5026–5032.
  • 20. Lee K.W., Hong S.I.: Zirconium hydrides and their effect on the circumferential mechanical properties of Zr-Sn-Fe-Nb tubes. J. Alloys Compd. 346 (2002) 302–307.
  • 21. Steinbrück M., Bottcher M.: Air oxidation of Zircaloy-4, M5® and ZIRLOTM cladding alloys at high temperatures. J. Nucl. Mater. 414 (2011) 276–285.
  • 22. Bertolino G., Meyer G., Perez Ipiña J., :n situ crack growth observation and fracture toughness measurement of hydrogen charged Zircaloy-4. J. Nucl. Mater. 322 (2003) 57–65.
  • 23. Bertolino G., Meyer G., Perez Ipiña J.: Effects of hydrogen content and temperature on fracture toughness of Zircaloy-4. J. Nucl. Mater. 320 (2003) 272–279.
  • 24. Bertolino G., Meyer G., Perez Ipia J.: Degradation of the mechanical properties of Zircaloy-4 due to hydrogen embrittlement. J. Alloys Compd. 330–332 (2002) 408–413.
  • 25. Hong S.I., Lee K.W., Kim K.T.: Effect of the circumferential hydrides on the deformation and fracture of Zircaloy cladding tubes. J. Nucl. Mater. 303 (2002) 169–176.
  • 26. Rajasekhara S., Kotula P.G., Enos D.G., Doyle B.L., Clark B.G.: Influence of Zircaloy cladding composition on hydride formation during aqueous hydrogen charging. J. Nucl. Mater. 489 (2017) 222-228.
  • 27. Zieliński A., Cymann A., Guminski A., Szoka A., Gajowiec G.: Influence of high temperature oxidation on hydrogen absorption and degradation of Zircaloy-2 and Zr 700 alloys. High Temp. Mater. Techn. (2018), to be published.
  • 28. Blackmur M.S., Robson J.D., Preuss M., Zanelatto O., Cernik R.J., Shi S.-Q., Ribeiro F., Andrieux J.: Zirconium hydride precipitation kinetics in Zircaloy-4 observed with synchrotron X-ray diffraction. J. Nucl. Mater. 464 (2015) 160-169.
  • 29. Burr P.A., Murphy S.T., Lumley S.C., Wenman M.R., Grimes R.W.: Hydrogen solubility in zirconium intermetallic second phase particles. J. Nucl. Mater. 443 (2013) 502-506.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46152450-bc69-494d-b236-0c9311b28ff7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.