Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The prerequisite for a modern approach to innovative procedures of the development of current or even newly created equipment for the transport of particulate materials is the utilization of simulation methods, such as the Discrete Element Method (DEM). This article focuses on the basic, or initial, validation of movement of material through the sample divider. The mechanical-physical properties of brown coal were measured. Based on these parameters the preliminary input values for EDEM Academic were selected, and a simulation of the dividing process was run. The key monitored parameters included density and friction coefficient. Experiments on a realistic model of the equipment were performed and assessed. The total weights of brown coal at the exit from the divider were determined for a specific speed of the divider. The aim of this task was to simulate the realistically determined weight division of the brown coal sample. The result from the DEM was compared with the results of measurement on a realistic model.
Wydawca
Rocznik
Tom
Strony
194--199
Opis fizyczny
Bibliogr. 24 poz. fig.
Twórcy
autor
- VSB-Technical University of Ostrava, ENET Centre, 17. listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic
autor
- VSB-Technical University of Ostrava, ENET Centre, 17. listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic
autor
- VSB-Technical University of Ostrava, ENET Centre, 17. listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic
autor
- VSB-Technical University of Ostrava, ENET Centre, 17. listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic
autor
- VSB-Technical University of Ostrava, ENET Centre, 17. listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic
autor
- VSB-Technical University of Ostrava, ENET Centre, 17. listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic
Bibliografia
- 1. Freidina E. V., Botvinnik A. A. and Dvornikova A. N. Basic principles of coal classification by useful quality. Journal of Mining Science, 47(5), 2011, 593–605.
- 2. Freidina E. V., Botvinnik A. A. and Dvornikova A. N. Coal quality control in the context of international standards ISO 9000–2000. Journal of mining science, 44(6), 2008, 585–599.
- 3. Yang X. and Teng F. The air quality co-benefit of coal control strategy in China. Resources, Conservation and Recycling, 129, 2016, 373–382.
- 4. Sun D., Fang J. and SUN J. Health-related benefits of air quality improvement from coal control in China: Evidence from the Jing-Jin-Ji region. Resources, Conservation and Recycling, 129, 2018, 416–423.
- 5. Zhu Q. Coal sampling and analysis standards. IEA Clean Coal Centre, London, United Kingdom, 2014.
- 6. Owen P. J. and Cleary P. W. Prediction of screw conveyor performance using the Discrete Element Method (DEM). Powder Technology, 193(3), 2009, 274–288.
- 7. Guo Y., Wang S., Hu K. and Li D. Optimization and experimental study of transport section lateral pressure of pipe belt conveyor. Advanced Powder Technology, 27(4), 2016, 1318–1324.
- 8. Orefice L. and Khinast J. G. DEM study of granular transport in partially filled horizontal screw conveyors. Powder Technology, 305, 2017, 347–356.
- 9. Ramírez-Aragón C., Alba-Elías F., González- Marcos A. and Ordieres-Meré J. Segregation in the tank of a rotary tablet press machine using experimental and discrete element methods. Powder Technology, 328, 2018, 452–469.
- 10. Syed Z., Tekeste M. and White D. A coupled sliding and rolling friction model for DEM calibration. Journal of Terramechanics, 72, 2017, 9–20.
- 11. Horabik J. and Molenda M. Parameters and contact models for DEM simulations of agricultural granular materials: A review. Biosystems Engineering, 147, 2016, 206–225.
- 12. Liu X., Hu Z., Wu W., Zhan J., Herz F., Specht E. DEM study on the surface mixing and whole mixing of granular materials in rotary drums. Powder Technology, 315 ,2017, 438–444.
- 13. Zhu H. P., Yu A. B. and Wu Y. H. Numerical investigation of steady and unsteady state hopper flows. Powder Technology, 170(3), 2006, 125–134.
- 14. Calderón C. A., Olivares M. C. V., Uñac R. O. and Vidales A. M. Correlations between flow rate parameters and the shape of the grains in a silo discharge. Powder Technology, 320, 2017, 43–50.
- 15. Mondal D. and Ghosh N. Study on filling factor of short length screw conveyor with flood-feeding condition. Materials Today: Proceedings, 5(1), 2018, 1286–1291.
- 16. Fedorko G., Molnar V., Grincova A., Dovica M., Toth T., Husakova N., Taraba V. and Kelemen M. Failure analysis of irreversible changes in the construction of rubber–textile conveyor belt damaged by sharp-edge material impact. Engineering Failure Analysis, 39, 2014, 135–148.
- 17. Molnar V., Fedorko G., Stehlikova B., Michalik P. and Weiszer M. A regression model for prediction of pipe conveyor belt contact forces on idler rolls. Measurement, 46(10), 2013, 3910–3917.
- 18. Fedorko G., Molnar V., Dovica M., Toth T. and Kopas M. Analysis of pipe conveyor belt damaged by thermal wear. Engineering Failure Analysis, 45, 2014, 41–48.
- 19. Molnar V., Fedorko G., Stehlikova B. and Paulikova A. Influence of tension force asymmetry on distribution of contact forces among the conveyor belt and idler rolls in pipe conveyor during transport of particulate solids. Measurement, 63, 2015, 120–127.
- 20. Klepka T., Dębski H. and Rydarowski H. Characteristics of high-density polyethylene and its properties simulation with use of finite element method. Polimery, 54(9), 2009, 668–672.
- 21. Fedorko G., Molnar V., Dovica M., Husakova N., Kral J. jr. and Ferdynus M. The use of industrial metrotomography in the field of maintenance and reliability of rubber-textile conveyor belts in closed continuous transport systems. Eksploatacja I Niezawodnosc – Maintenance and Reliability, 18(4), 2016, 539–543.
- 22. Jachowicz T. and Sikora R. Methods of forecasting of the changes of polymeric products properties. Polimery, 51(3), 2006, 177–185.
- 23. Rackl M., Top F., Molhoek C. P. and Schott D. L. Feeding system for wood chips: A DEM study to improve equipment performance. Biomass and Bioenergy, 98, 2017, 43–52.
- 24. González-Montellano C., Ramirez A., Gallego E. and Ayuga F. Validation and experimental calibration of 3D discrete element models for the simulation of the discharge flow in silos. Chemical Engineering Science, 66(21), 2011, 5116–5126.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-460dec6a-3d34-4200-9746-7011ce557cdd