PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An evaluation of turbulence model for vortex breakdown detection over delta wing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An important phenomenon of delta wing is the mechanism of vortex core, which indicates the increase in lifting force until the occurrence of the vortex breakdown. The computational fluid dynamics (CFD) is very helpful in visualizing and providing analysis of the detailed data. The use of turbulent models will affect the quality of results in obtaining the vortex breakdown phenomenon. This study used several models of turbulence to capture the occurrence of vortex breakdown and compare it with experiments using water tunnel test facility. The results show that all turbulence models give good results at a low angle of attack (AoA), but at a high AoA the DES model gives the results closest to experimental ones with Cl error value of about 1 %. Taking into account the time required and the acceptable level of accuracy, the use of SST and k-ω models is an alternative option for use in the detection of vortex breakdown.
Rocznik
Strony
399--415
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
  • Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada 55281, Indonesia
  • Department of Mechanical Engineering, Vocational College, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
autor
  • Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada 55281, Indonesia
autor
  • Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada 55281, Indonesia
Bibliografia
  • [1] E.C. Polhamus. A concept of the vortex lift of sharp-edge delta wings based on a leading-edge suction analogy. NASA Technical Note D-3767, 1966.
  • [2] E.C. Polhamus. Vortex lift research: early contributions and some current challenges. In J.F. Campbell, R.F. Osborn, J.T. Foughner Jr., editors, Vortex Flow Aerodynamics, NASA Conference Publication 2416, vol. 1, pages 1–30, 1986.
  • [3] Z. Vlahostergios, D. Missirlis, K. Yakinthos, and A. Goulas. Computational modeling of vortex breakdown control on a delta wing. International Journal of Heat and Fluid Flow, 39:64–77, 2013. doi: 10.1016/j.ijheatfluidflow.2012.12.002.
  • [4] I. Gursul. Review of unsteady vortex flows over delta wings. 21st AIAA Applied Aerodynamics Conference, pages 1–25, Orlando, USA, 23-26 June 2003. doi: 10.2514/6.2003-3942.
  • [5] I. Gursul. Review of unsteady vortex flows over slender delta wings. Journal of Aircraft, 42(2):299–319, 2005. doi: 10.2514/1.5269.
  • [6] I. Gursul and H. Yang. Vortex breakdown over a pitching delta wing. Journal of Fluids and Structures, 9(5):571–583, 1995. doi: 10.1006/jfls.1995.1032.
  • [7] M. Menke and I. Gursul. Nonlinear response of vortex breakdown over a pitching delta wing. Journal of Aircraft, 36(3):496–500, 1999. doi: 10.2514/2.2481.
  • [8] P.V. Vorobieff and D.O. Rockwell. Vortex breakdown on pitching delta wing: control by intermittent trailing-edge blowing. AIAA Journal, 36(4):585–589, 1998. doi: 10.2514/2.409.
  • [9] M. Chen, P. Liu, H. Guo, and Q. Qu. Effect of sideslip on high-angle-of-attack vortex flow over close-coupled canard configuration. Journal of Aircraft, 53(1):217–230, 2016. doi: 10.2514/1.C033305.
  • [10] V. Mudkavi. The phenomenon of vortex breakdown. In Proceedings of the Fluid Dynamics Symposium, pages 123–135, Sikkim, India, 9 July 1993.
  • [11] E. Krause. A contribution to the problem of vortex breakdown. Computers & Fluids, 13(3):375–381, 1985. doi: 10.1016/0045-7930(85)90008-8.
  • [12] E.A. Anderson and T.A. Lawton. Correlation between vortex strength and axial velocity in a trailing vortex. Journal of Aircraft, 40(4):699–704, 2003. doi: 10.2514/2.3148.
  • [13] T.B. Benjamin. Significance of the vortex break down phenomenon. Journal of Basic Engineering, 87(2):518–522, 1965. doi: 10.1115/1.3650590.
  • [14] G.E. Erickson. Water-tunnel studies of leading-edge vortices. Journal of Aircraft, 19(6):442–448, 1982. doi: 10.2514/3.57414.
  • [15] E.D. Robertson, V. Chitta, D.K. Walters, and S. Bhushan. On the vortex breakdown phenomenon in high angle of attack flows over delta wing geometries. In ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), Montreal, Canada, 14–20 November 2014. doi: 10.1115/IMECE2014-39354.
  • [16] A.M. Thu, Y.H. Byun, and J.-W. Lee. Dye visualization of the vortical flow structure over a double-delta wing. Journal of Aerospace Engineering, 25(4):541–546, 2012. doi: 10.1061/(ASCE)AS.1943-5525.0000195.
  • [17] S.B. Wibowo, Sutrisno, T.A. Rohmat, Z. Anwar, F.R. Syadii, R. Mahardika, and W.F. Naufal. An investigation into the use of GAMA water tunnel for visualization of vortex breakdown on the delta wing. 9th International Conference on Thermofluids, AIP Conference Proceedings, 2001(1):050007, 2018. doi: 10.1063/1.5049998.
  • [18] M.H. Sohn, K.Y. Lee, and J.W. Chang. Vortex flow visualization of a yawed delta wing with leading edge extension. Journal of Aircraft, 41(2):231–237,2004. doi: 10.2514/1.9281.
  • [19] L.P. Erm. Recent aerodynamics research in the dsto water tunnel. In Proceedings of 16th Australasian Fluid Mechanics Conference, pages 381–384, Gold Coast, Australia, 2–7 December, 2007.
  • [20] L.P. Erm. An investigation into the feasibility of measuring flow-induced pressures on the surface of a model in the AMRL water tunnel, Report DSTO-TN-0323, 2000.
  • [21] M. Kyriakou, D. Missirlis, and K. Yakinthos. Numerical modeling of the vortex breakdown phenomenon on a delta wing with trailing-edge jet-flap. International Journal of Heat and Fluid Flow, 31(6):1087–1095, 2010. doi: 10.1016/j.ijheatfluidflow.2010.08.002.
  • [22] J.M. Delery. Aspects of vortex breakdown. Progress in Aerospace Sciences, 30(1):1–59, 1994. doi: 10.1016/0376-0421(94)90002-7.
  • [23] L.A. Schiavetta, O.J. Boelens, S. Crippa, R.M. Cummings, W. Fritz, and K.J. Badcock. Shock effects on delta wing vortex breakdown. Journal of Aircraft, 46(3):903–914, 2009. doi: 10.2514/1.38792.
  • [24] A.M. Mitchell and J. Délery. Research into vortex breakdown control. Progress in Aerospace Sciences, 37(4):385–418, 2001. doi: 10.1016/S0376-0421(01)00010-0.
  • [25] O. Descalzi, J. Martínez, and S. Rica. Instabilities and Nonequilibrium Structures IX, Springer, Netherlands, 2012.
  • [26] R.E. Spall, T.B. Gatski, and C.E. Grosch. A criterion for vortex breakdown. Physics of Fluids, 30(11):3434, 1987. doi: 10.1063/1.866475.
  • [27] B.A. Robinson, R.M. Barnett, and S. Agrawal. Simple numerical criterion for vortex breakdown. AIAA Journal, 32(1):116–122, 1994. doi: 10.2514/3.11958.
  • [28] L.E. Ericsson and J.P. Reding. Unsteady aerodynamics of slender delta wings at large angles of attack. Journal of Aircraft, 12(9):721–729, 1975. doi: 10.2514/3.59863.
  • [29] L.P. Erm and M.V. Ol. An assessment of the usefulness of water tunnels for aerodynamic investigations.Technical Report DSTO-TR-2803, 2012.
  • [30] J.H. Del Frate, F.A. Zuniga, and D.F. Fisher. In-flight flow visualization with pressure measurements at low speeds on the NASA F-18 high alpha research vehicle. In AGARD Vortex Flow Aerodynamics Conference, Scheveningen, Netherlands, 1–4 October, 1990.
  • [31] O.V. Cavazos Jr. A flow visualization study of LEX generated vortices on a scale model of a F/A-18 fighter aircraft at high angles of attack. Master Thesis, Naval Postgraduate School, Monterey, CA, 1990.
  • [32] D. Monkand E.A. Chadwick. Comparison of turbulence models effectiveness for a delta wing at low Reynolds numbers. In 7th European Conference for Aeronautics and Space Sciences (EUCASS), Milan, Italy, 3–6 July, 2017. doi: 10.13009/EUCASS2017-653.
  • [33] T. Janson and J. Piechna. Numerical analysis of aerodynamic characteristics of a of high-speed car with movable bodywork elements. Archive of Mechanical Engineering, 62(4):451–476, 2015. doi: 10.1515/meceng-2015-0026.
  • [34] J.A. Freeman. Computational fluid dynamics investigation of vortex breakdown for a delta wing at high angle of attack. Master’s Thesis, Air Force Institute of Technology, Ohio, 2003.
  • [35] I. Mary. Large eddy simulation of vortex breakdown behind a delta wing. International Journal of Heat and Fluid Flow, 24(4):596–605, 2003. doi: 10.1016/S0142-727X(03)00053-5.
  • [36] M. Lv, S. Fang, and Y. Zhang. Numerical simulation of unsteady separated flow over a delta wing using Cartesian grids and DES/DDES. Procedia Engineering, 99:423–427, 2015. doi: 10.1016/j.proeng.2014.12.556.
  • [37] H.K. Versteegand, W. Malalasekera. An Introduction to Computational Fluid Dynamics – The Finite Volume Method, 2nd edition Pearson Education, 2007.
  • [38] Sutrisno, Deendarlianto, T.A. Rochmat, Indarto, S.B. Wibowo, S. Iswahyudi, C. Wiratama and D.B.M. Erlambang. The rolled-up and tip vortices studies in the CFD model of the 3-D swept-backward wind turbine blades. Modern Applied Science, 11(12):118–134, 2017. doi: 10.5539/mas.v11n12p118.
  • [39] J. Franke. Introduction to the prediction of wind loads on buildings by computational wind engineering (CWE). In: Stathopoulos T., Baniotopoulos C.C. (eds), Wind Effects on Buildings and Design of Wind-Sensitive Structures, Part of the CISM International Centre for Mechanical Sciences, 493:67–103, 2007. doi: 10.1007/978-3-211-73076-8_3.
  • [40] J. Revuz, D.M. Hargreaves, and J.S. Owen. On the domain size for the steady-state CFD modelling of a tall building. Wind and Structures, 15(4):313–329, 2012. doi: 10.12989/was.2012.15.4.313.
  • [41] R. Patel and S. Ramani. Determination of optimum domain size for 3D numerical simulation in ANSYS CFX. International Journal of Innovative Research in Science, Engineering and Technology, 4(6):1333–1341, 2007.
  • [42] R.D. Firmansyah, S.B. Wibowo, and R. Mareta. The application of measurement instrument of three degrees of freedom of aerodynamic force in water tunnel. Jurnal Sainsdan Teknologi, 6(2) Universitas Pendidikan Ganesha, 2017 (in Indonesian). doi: 10.23887/jst-undiksha.v6i2.11785.
Uwagi
PL
W artykule brak imienia autora Sutrisno.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-460a22ae-b0ef-40cd-92bc-726f66c300f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.