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THE CROSSING NUMBERS OF
JOIN PRODUCTS OF PATHS

WITH THREE GRAPHS OF ORDER FIVE
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Abstract. The main aim of this paper is to give the crossing number of the join
product G∗ + Pn for the disconnected graph G∗ of order five consisting of the complete
graph K4 and one isolated vertex, where Pn is the path on n vertices. The proofs are
done with the help of a lot of well-known exact values for the crossing numbers of
the join products of subgraphs of the graph G∗ with the paths. Finally, by adding
new edges to the graph G∗, we are able to obtain the crossing numbers of the join
products of two other graphs with the path Pn.
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1. INTRODUCTION

The crossing number cr(G) of a simple graph G with the vertex set V (G) and the edge
set E(G) is the minimum possible number of edge crossings in a drawing of G in the
plane (for the definition of a drawing see Klešč [10]). It is easy to see that a drawing
with a minimum number of crossings (an optimal drawing) is always a good drawing,
meaning that no edge crosses itself, no two edges cross more than once, and no two
edges incident with the same vertex cross. Let D be a good drawing of the graph
G (D(G)). We denote the number of crossings in D by crD(G). Let Gi and Gj be
edge-disjoint subgraphs of G. We denote the number of crossings between edges of Gi

and edges of Gj by crD(Gi, Gj), and the number of crossings among edges of Gi in
D by crD(Gi). For any three mutually edge-disjoint subgraphs Gi, Gj , and Gk of G,
the following equations hold [10]:

crD(Gi ∪ Gj) = crD(Gi) + crD(Gj) + crD(Gi, Gj),

crD(Gi ∪ Gj , Gk) = crD(Gi, Gk) + crD(Gj , Gk).

© 2022 Authors. Creative Commons CC-BY 4.0 635



636 Michal Staš and Mária Švecová

The investigation on the crossing number of graphs is a classical and very difficult
problem. Garey and Johnson [7] proved that this problem is NP-complete. Note
that the exact values of the crossing numbers are known for only a few families of
graphs, see Clancy et al. [4]. The purpose of this article is to extend the known results
concerning this topic. Some parts of proofs will be based on Kleitman’s result [9] on
the crossing numbers for some complete bipartite graphs. He showed that

cr(Km,n) =
⌊m

2

⌋⌊m − 1
2

⌋⌊n

2

⌋⌊n − 1
2

⌋
, for m ≤ 6.

The join product of two graphs Gi and Gj , denoted Gi + Gj , is obtained from
vertex-disjoint copies of Gi and Gj by adding all edges between V (Gi) and V (Gj).
For |V (Gi)| = m and |V (Gj)| = n, the edge set of Gi + Gj is the union of the disjoint
edge sets of the graphs Gi, Gj , and the complete bipartite graph Km,n. Let Dn

and Pn be the discrete graph and the path on n vertices, respectively. The crossings
numbers of the join products of the paths with all graphs of order at most four
have been well-known for a long time by Klešč [11], and Klešč and Schrötter [18],
and therefore it is understandable that our immediate goal is to establish the exact
values for the crossing numbers of G + Pn also for all graphs G of order five. The
crossing numbers of G + Pn are already known for a lot of graphs G of order five and
six [3, 5, 6, 10, 14, 17, 22, 24, 27, 28]. In all these cases, the graph G is connected
and contains usually at least one cycle. Note that the crossing numbers of the join
product G + Pn are known only for some disconnected graphs G on five or six
vertices [2, 19, 23], and so the purpose of this article is to extend the known results
concerning this topic to new disconnected graphs. The minimal number of crossings in
the Cartesian product and in the strong product of paths have been studied by Klešč
et al. in [15] and [16].

In this paper, we will use definitions and notation of the crossing numbers of graphs
presented by Klešč [11]. We will also use special designation of some graphs that are
represented by lower indexes in the order originally designated by [11, 13] (except in
the case of the disconnected graph G∗), and in which an upper index represents the
number of vertices of the examined graph. Let G∗ be the disconnected graph of order
five consisting of one isolated vertex and the complete graph K4. The crossing number
of G∗ + Dn was determined for any n ≥ 1 by Staš [26] using the properties of cyclic
permutations. The main aim of the paper is to establish the crossing numbers of the
join products of G∗ with paths Pn. Due to the special drawing of G∗ + P2 in Figure 2
with only 3 crossings, the result of the main Theorem 2.4 can be estimated for the
paths Pn on at least 3 vertices. The paper concludes by giving the crossing numbers of
G5

16 + Pn and G5
18 + Pn in Corollaries 3.2 and 3.3, and Theorem 4.3, respectively. Note

that the result in Corollary 3.3 has already been claimed by Li [20]. Since this paper
does not seem to be available in English, we have not been able to verify this result
but we can certainly say that the author’s result is incorrect for G5

16 + P2 according to
Corollary 3.2. The result in Theorem 4.3 has also been claimed by Li [21], but again
not in English. Clancy et al. [4] also placed an asterisk on a number of the results in
their survey to essentially indicate that the mentioned results appeared in journals do
not have a sufficiently rigorous peer-review process.
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In our paper, certain parts of proofs can be also simplified with the help of software
COGA generating all cyclic permutations of five elements. Its description can be found
in Berežný and Buša [1]. In the proofs of the paper, we will often use the term “region”
also in nonplanar drawings. In this case, crossings are considered to be vertices of
the “map”.

2. CYCLIC PERMUTATIONS AND POSSIBLE DRAWINGS OF G∗

In the rest of the paper, let V (G∗) = {v1, v2, . . . , v5}, and let v5 be the vertex notation
of the isolated vertex of G∗ in all considered good subdrawings of the graph G∗. We
consider the join product of G∗ with the discrete graph Dn. It is not difficult to see
that the graph G∗ + Dn consists of just one copy of the graph G∗ and n vertices
t1, t2, . . . , tn, where each vertex ti, i = 1, 2, . . . , n, is adjacent to every vertex of G∗.
Let T i, 1 ≤ i ≤ n, denote the subgraph which is uniquely induced by the five edges
incident with the fixed vertex ti. This means that the graph T 1 ∪ . . .∪T n is isomorphic
to the complete bipartite graph K5,n and

G∗ + Dn = G∗ ∪ K5,n = G∗ ∪
( n⋃

i=1
T i

)
. (2.1)

The graph G∗ + Pn contains G∗ + Dn as a subgraph. For the subgraphs of the
graph G∗ + Pn which are also subgraphs of the graph G∗ + nK1 we use the same
notation as above. Let P ∗

n denote the path induced on n vertices of G∗ + Pn not
belonging to the subgraph G∗. Hence, P ∗

n consists of the vertices t1, t2, . . . , tn and of
the edges {ti, ti+1} for i = 1, 2, . . . , n − 1. One can easily see that

G∗ + Pn = G∗ ∪ K5,n ∪ P ∗
n = G∗ ∪

( n⋃

i=1
T i

)
∪ P ∗

n . (2.2)

Let D be a good drawing of the graph G∗ + Dn. The rotation of a vertex
ti in the drawing D (rotD(ti)) is the cyclic permutation that records the (cyclic)
counter-clockwise order in which the edges leave ti, see Hernández-Vélez et al. [8]
or Woodall [29]. We use the notation (12345) if the counter-clockwise order the
edges incident with the vertex ti is tiv1, tiv2, tiv3, tiv4, and tiv5. We emphasize that
a rotation is a cyclic permutation, that is, (12345), (23451), (34512), (45123), and
(51234) denote the same rotation. Thus, 5!/5 = 24 different rotD(ti) can appear in
a drawing of the graph G∗ + Dn. In the given drawing D, we separate all subgraphs T i

of the graph G∗ + Dn into three mutually disjoint subsets depending on how many
times the considered T i crosses the edges of G∗ in D. For i = 1, . . . , n, T i ∈ RD if
crD(G∗, T i) = 0 and T i ∈ SD if crD(G∗, T i) = 1. Every other subgraph T i crosses
the edges of G∗ at least twice in D. Clearly, the idea of dividing the subgraphs T i

into three mentioned subsets is also retained in all drawings of the graphs G∗ + Pn.
Due to arguments in the proof of Theorem 2.4, if we would like to obtain an optimal
drawing D of G∗ + Pn, at least one of the sets RD and SD must be nonempty.
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For T i ∈ RD ∪ SD, let F i denote the subgraph G∗ ∪ T i, i ∈ {1, 2, . . . , n}, of G∗ + Dn

and let D(F i) be its subdrawing induced by D. In [26], three possible non isomorphic
drawings of G∗ were described. They are presented in Figure 1 with the corresponding
vertex notation.
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Fig. 1. Three possible non isomorphic drawings of the graph G∗: (a) the planar drawing of G∗;
(b) the drawing of G∗ with crD(G∗) = 1 and the isolated vertex v5 located in the triangular
region of subdrawing G∗ \ v5; (c) the drawing of G∗ with crD(G∗) = 1 and the isolated vertex

v5 located in the quadrangular region of subdrawing G∗ \ v5

In the proof of Theorem 2.4, several parts will be based on the following theorem
presented in [26].
Theorem 2.1 ([26, Theorem 3.1]). cr(G∗ + Dn) = 4

⌊
n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
for n ≥ 1.

Lemma 2.2. cr(G∗ + D2) = cr(G∗ + P2) = 3.
Proof. Figure 2 shows the drawing of G∗ + P2 with three crossings, that is,
cr(G∗ + P2) ≤ 3. The graph G∗ + D2 is a subgraph of G∗ + P2, and therefore,
cr(G∗ + P2) ≥ cr(G∗ + D2) = 3 by Theorem 2.1. This completes the proof of
Lemma 2.2.
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Fig. 2. The drawing of G∗ + P2 with 3 crossings
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Lemma 2.3. cr(G∗ + P3) = 9.
Proof. Figure 3 offers the subdrawing of G∗+P3 with 9 crossings, and so cr(G∗+P3) ≤ 9.
The graph G∗ +P3 contains a subgraph that is a subdivision of the graph K4 +C3, and
it was proved by Klešč [12] that cr(K4 + C3) = 9. As cr(G∗ + P3) ≥ cr(K4 + C3) = 9,
the proof of Lemma 2.3 is done.
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Fig. 3. The good drawing of G∗ + Pn, n ≥ 3, with 4
⌊

n
2

⌋⌊
n−1

2

⌋
+ n +

⌊
n
2

⌋
+ 1 crossings

Two vertices ti and tj of the graph G∗ +Dn are antipodal in a drawing of G∗ +Dn if
the subgraphs T i and T j do not cross. A drawing is antipode-free if it has no antipodal
vertices. The same idea of two noncrossing subgraphs is also retained in all drawings
of the graphs G∗ + Pn. Now we are able to prove the main result of this paper.
Theorem 2.4. cr(G∗ + Pn) = 4

⌊
n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
+ 1 for n ≥ 3.

Proof. By Lemma 2.3, the result is true for n = 3. In Figure 3, the edges of K5,n cross
each other

4
(⌈ n

2 ⌉
2

)
+ 4

(⌊ n
2 ⌋
2

)
= 4

⌊n

2

⌋⌊n − 1
2

⌋

times, each subgraph T i, i = 1, . . . ,
⌈

n
2

⌉
on the left side crosses the edges of G∗ exactly

once and each subgraph T i, i =
⌈

n
2

⌉
+ 1, . . . , n on the right side crosses the edges

of G∗ exactly twice. The path P ∗
n crosses G∗ once, and so 4

⌊
n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
+ 1

crossings appear among the edges of the graph G∗ + Pn in this drawing. Thus,
cr(G∗ + Pn) ≤ 4

⌊
n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
+ 1. We prove the reverse inequality by induction

on n. Suppose now that, for some n ≥ 4, there is a drawing D with

crD(G∗ + Pn) < 4
⌊n

2

⌋⌊n − 1
2

⌋
+ n +

⌊n

2

⌋
+ 1, (2.3)

and that

cr(G∗ + Pm) = 4
⌊m

2

⌋⌊m − 1
2

⌋
+ m +

⌊m

2

⌋
+ 1 for any integer 3 ≤ m < n. (2.4)
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As the graph G∗ + Dn is a subgraph of the graph G∗ + Pn, by Theorem 2.1, the
edges of G∗ +Pn are crossed exactly 4

⌊
n
2

⌋⌊
n−1

2
⌋

+n+
⌊

n
2

⌋
times, and therefore, no edge

of the path P ∗
n is crossed in D. This also enforces that all vertices ti of the path P ∗

n

must be placed in the same region of the considered good subdrawing of G∗. Moreover,
if r = |RD| and s = |SD|, the assumption (2.3) together with the well-known fact
cr(K5,n) = 4

⌊
n
2

⌋⌊
n−1

2
⌋

imply that in D:

crD(G∗) +
∑

T i∈RD∪SD

crD(G∗, T i) +
∑

T i ̸∈RD∪SD

crD(G∗, T i) ≤ n +
⌊n

2

⌋
,

i.e.,

crD(G∗) + 0r + 1s + 2(n − r − s) ≤ n +
⌊n

2

⌋
. (2.5)

This readily forces that 2r + s ≥
⌈

n
2

⌉
+ crD(G∗), that is, r + s ≥ 1, and so there is

at least one subgraph T i whose edges cross the edges of G∗ at most once. Now, we will
deal with the possibilities of obtaining a subgraph T i ∈ RD ∪ SD in the considered
drawing D and we will show that in all cases a contradiction with the assumption (2.3)
is obtained.

Case 1. We suppose the drawing with the vertex notation of G∗ in such a way
as shown in Figure 1(a). The graph G∗ contains the cycle v1v2v4v1 as a subgraph
by which the vertices v3 and v5 are separated in D(G∗), that is, each T i crosses the
edges of v1v2v4v1 at least once. Because no region is incident to all vertices in D(G∗),
there is no possibility to obtain a subdrawing of G∗ ∪T i for a T i ∈ RD. As r = 0, there
are at least

⌈
n
2

⌉
subgraphs T i by which the edges of G∗ are crossed just once. Since

all vertices ti of the path P ∗
n are placed in the same region of the considered good

subdrawing of G∗, all such vertices ti of P ∗
n must be placed in the outer region of

subdrawing G∗ with the vertices v1, v2, v4, and v5 on its boundary.
Let us denote by H the subgraph of G∗ with the vertex set V (G∗), and the edge

set E(G∗) \ {v1v2, v2v4, v4v1}. Since the exact value for the crossing number of the
graph H + Pn is given by Klešč and Staš [19], i.e., cr(H + Pn) = 4

⌊
n
2

⌋⌊
n−1

2
⌋

+
⌊

n
2

⌋
,

the edges of H + Pn are crossed at least 4
⌊

n
2

⌋⌊
n−1

2
⌋

+
⌊

n
2

⌋
times in D. The graph

G∗ contains the cycle v1v2v4v1 as a subgraph by which the vertices v3 and v5 are
separated in D(G∗), that is, each subgraph T i crosses the edges of this cycle at least
once. However, by the assumption (2.3), any such T i must cross the edges of the
cycle v1v2v4v1 exactly once. As s = n, if we apply the similar discussion of a fixing
as in Case 1 in [26], we obtain at least 4

⌊
n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
+ 1 crossings for all

subcases in D. Let MD be the set of all configurations for the drawing D belonging
to M = {A1, A2, A3, A4, A5, A6, B1, B2, B3, B4, B5, B6}, where a subdrawing of any
subgraph G∗ ∪ T i has the configuration either Ap or Bp represented by some cyclic
permutation with either rotD(ti) = Ap or rotD(ti) = Bp for some p ∈ {1, . . . , 6},
respectively. The lower bounds for the number of crossings of two configurations
cr(Xp, Yq) are presented in Table 1. (They were also established in Table 1 of [26],
where X , Y ∈ {A, B} and p, q ∈ {1, . . . , 6}.)
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Table 1
The necessary number of crossings between T i and T j for the configurations Xp, Yq

− A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6
A1 4 1 2 3 2 3 4 3 2 3 2 3
A2 1 4 3 2 3 2 3 4 3 2 3 2
A3 2 3 4 1 2 3 2 3 4 3 2 3
A4 3 2 1 4 3 2 3 2 3 4 3 2
A5 2 3 2 3 4 1 2 3 2 3 4 3
A6 3 2 3 2 1 4 3 2 3 2 3 4
B1 4 3 2 3 2 3 4 3 4 3 4 3
B2 3 4 3 2 3 2 3 4 3 4 3 4
B3 2 3 4 3 2 3 4 3 4 3 4 3
B4 3 2 3 4 3 2 3 4 3 4 3 4
B5 2 3 2 3 4 3 4 3 4 3 4 3
B6 3 2 3 2 3 4 3 4 3 4 3 4

We discuss over all possible subsets of MD in the following subcases:

a) {Ao, Ao+1} ⊆ MD for some o ∈ {1, 3, 5}. Without lost of generality, let us
consider two different subgraphs T n−1, T n ∈ SD such that F n−1 and F n have
configurations A1 and A2, respectively. Then, crD(T n−1 ∪ T n, T k) ≥ 5 is fulfilling for
any T k ∈ SD with k ̸= n − 1, n by summing the values in the first two rows for each
column of Table 1. As crD(G∗ ∪ T n−1 ∪ T n) ≥ 3, by fixing the graph G∗ ∪ T n−1 ∪ T n,
we have

crD(G∗ + Pn) ≥ crD(K5,n−2) + crD(K5,n−2, G∗ ∪ T n−1 ∪ T n)
+ crD(G∗ ∪ T n−1 ∪ T n)

≥ 4
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 6(n − 2) + 3

≥ 4
⌊n

2

⌋⌊n − 1
2

⌋
+ n +

⌊n

2

⌋
+ 1.

This contradicts the assumption of D. Due to the symmetry, the same arguments are
applied for the cases {A3, A4} and {A5, A6}.

b) {Ao, Ao+1} ̸⊆ MD for o = 1, 3, 5. First, suppose {Ap, Ap+2, Ap+4} ⊆ MD

for some p ∈ {1, 2} or there are three mutually different o, p, q ∈ {1, . . . , 6} with
o ≡ p ≡ q (mod 2) such that {Ao, Ap, Bq} ⊆ MD. In the rest of the paper, let us
assume three different subgraphs T n−2, T n−1, T n ∈ SD such that F n−2, F n−1 and F n

have configurations A1, A3 and B5, respectively. Then, crD(T n−2 ∪T n−1 ∪T n, T k) ≥ 8
holds for any T k ∈ SD with k ≠ n−2, n−1, n by summing of three corresponding values
of Table 1. As crD(T n−2 ∪T n−1 ∪T n) ≥ 6, by fixing the graph G∗ ∪T n−2 ∪T n−1 ∪T n,
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we have

crD(G∗ + Pn) ≥ crD(K5,n−3) + crD(K5,n−3, G∗ ∪ T n−2 ∪ T n−1 ∪ T n)
+ crD(G∗ ∪ T n−2 ∪ T n−1 ∪ T n)

≥ 4
⌊n − 3

2

⌋⌊n − 4
2

⌋
+ 9(n − 3) + 6 + 3

≥ 4
⌊n

2

⌋⌊n − 1
2

⌋
+ n +

⌊n

2

⌋
+ 1.

This also contradicts the assumption of D, and therefore, suppose that
{Ap, Ap+2, Ap+4} ̸⊆ MD for any p = 1, 2, and also {Ao, Ap, Bq} ̸⊆ MD with
o ≡ p ≡ q (mod 2) for any three mutually different o, p, q = 1, . . . , 6. Now, for T i ∈ SD,
we will discuss the possibility of obtaining a subdrawing of G∗ ∪ T i ∪ T j in D with
crD(T i, T j) = 2 for some T j ∈ SD.

Let us consider that there are two different subgraphs T i, T j ∈ SD with
crD(T i, T j) = 2 such that F i and F j have configurations Xp and Yq, respectively,
where X , Y ∈ {A, B} and p, q ∈ {1, . . . , 6}. Then, crD(T i ∪ T j , T k) ≥ 6 holds for any
T k ∈ SD, k ̸= i, j by summing of two corresponding values of Table 1. Thus, by fixing
the graph G∗ ∪ T n−1 ∪ T n, we have

crD(G∗ + Pn) ≥ crD(K5,n−2) + crD(K5,n−2, G∗ ∪ T n−1 ∪ T n)

+crD(G∗ ∪ T n−1 ∪ T n)

≥ 4
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 7(n − 2) + 2 + 2

≥ 4
⌊n

2

⌋⌊n − 1
2

⌋
+ n +

⌊n

2

⌋
+ 1.

Finally, assume that there are no two different subgraphs T i, T j ∈ SD with
crD(T i, T j) ≤ 2. Hence, for each T i ∈ SD, crD(G∗ ∪ T i, T j) ≥ 1 + 3 = 4 is fulfilling
for any T j ∈ SD with j ̸= i. Consequently, by fixing the graph G∗ ∪ T i, we have

crD(G∗ + Pn) ≥ crD(K5,n−1) + crD(K5,n−1, G∗ ∪ T i) + crD(G∗ ∪ T i)

≥ 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 4(n − 1) + 1

≥ 4
⌊n

2

⌋⌊n − 1
2

⌋
+ n +

⌊n

2

⌋
+ 1.

Case 2. We consider the drawing of G∗ given in Figure 1(b). In this case, the same
idea of the separating cycle v1v2v4v1 can be also used. Again, let H the subgraph of
G∗ defined by the same form as in Case 1. By [19], there are at least 4

⌊
n
2

⌋⌊
n−1

2
⌋

+
⌊

n
2

⌋

crossings on the edges of H + Pn, and the edges of the cycle v1v2v4v1 are crossed at
least n times by the edges of subgraphs T i and once by the edges of the subgraph H.

Case 3. We consider the drawing of G∗ given in Figure 1(c). Since the set SD is
empty, there are at least

⌈ ⌈ n
2 ⌉+1

2
⌉

subgraphs T i whose edges do not cross the edges
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of G∗ provided by 2r ≥
⌈

n
2

⌉
+ 1. So, there are 4 different possible rotations systems

with no crossing depending on in which region of D(F i \ v5) the edge tiv5 is placed,
see also [26]. These four possibilities under our consideration are denoted by Ep, for
p = 1, 2, 3, 4, and they are represented by the cyclic permutations (14325), (14532),
(14352), and (15432), respectively. They have been already introduced in [26]. Let ND

be the set of all configurations for the drawing D belonging to N = {E1, E2, E3, E4}.
The lower bounds for the number of crossings of two configurations cr(Ep, Eq) are
presented in Table 2 (they were also established in Table 2 of [26]).

Table 2
The necessary number of crossings between T i and T j for the configurations Ep, Eq

− E1 E2 E3 E4

E1 4 2 3 3
E2 2 4 3 3
E3 3 3 4 2
E4 3 3 2 4

Let us show that the considered drawing D must be antipode-free. For a contradic-
tion suppose, without loss of generality, that crD(T k, T l) = 0. If at least one of T k and
T l, say T k, does not cross G∗, it is not difficult to verify that crD(G∗, T k ∪T l) ≥ 4 holds
by four possible subdrawings of F k with the configuration Ep for some p ∈ {1, . . . , 4},
for more also see [26]. By [9], we already know that cr(K5,3) = 4, which yields that
any T m, m ̸= k, l, crosses the edges of the subgraph T k ∪ T l at least four times. So,
the number of crossings of G∗ + Pn in D is given by

crD(G∗ + Pn) = crD (G∗ + Pn−2) + crD(T k ∪ T l) + crD(K5,n−2, T k ∪ T l)
+ crD(G∗, T k ∪ T l)

≥ 4
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ n − 2 +

⌊n − 2
2

⌋
+ 0 + 4(n − 2) + 4

= 4
⌊n

2

⌋⌊n − 1
2

⌋
+ n +

⌊n

2

⌋
+ 1.

This contradiction with the assumption (2.3) confirms that D is antipode-free. Now,
we consider the following subcases:

a) {Ep, Ep+1} ⊆ ND for some p ∈ {1, 3}. Without lost of generality, let us consider
two different subgraphs T n−1, T n ∈ RD such that F n−1 and F n have configurations
E1 and E2, respectively. Also, by summing the values in the first two rows for each
column of Table 2, crD(T n−1 ∪ T n, T k) ≥ 6 holds for any T k ∈ RD with k ̸= n − 1, n.
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Thus, by fixing the graph G∗ ∪ T n−1 ∪ T n, we have

crD(G∗ + Pn) ≥ crD(K5,n−2) + crD(K5,n−2, G∗ ∪ T n−1 ∪ T n)
+ crD(G∗ ∪ T n−1 ∪ T n)

≥ 4
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 6(r − 2) + 6(n − r) + 2 + 1

= 4
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 6n − 9

≥ 4
⌊n

2

⌋⌊n − 1
2

⌋
+ n +

⌊n

2

⌋
+ 1.

This subcase confirms a contradiction with the assumption in D, and therefore,
suppose that {E1, E2} ̸⊆ ND and {E3, E4} ̸⊆ ND in all following cases. Moreover, for
each T i ∈ RD, let us denote LD(T i) = {T k ̸∈ RD : crD(G∗ ∪ T i, T k) = 3}, and
li = |LD(T i)|. If there is a subgraph T i ∈ RD such that 2li ≥

⌊
n+2

2
⌋
, then by fixing

the subgraph G∗ ∪ T i ∪ T k with some T k ∈ LD(T i), we have

crD(G∗ + Pn) ≥ crD(K5,n−2) + crD(K5,n−2, G∗ ∪ T i ∪ T k) + crD(G∗ ∪ T i ∪ T k)

≥ 4
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 5(r − 1) + 7(li − 1) + 5(n − r − li) + 3 + 1

= 4
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 5n + 2li − 8

≥ 4
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 5n +

⌊n + 2
2

⌋
− 8

≥ 4
⌊n

2

⌋⌊n − 1
2

⌋
+ n +

⌊n

2

⌋
+ 1.

This contradicts the assumption (2.3) in D, and therefore, suppose that 2li <
⌊

n+2
2

⌋

for each T i ∈ RD, which yields that li ≤
⌊

⌊ n+2
2 ⌋−1

2

⌋
.

b) ND = {Ep, Eq} for two different p, q = 1, 2, 3, 4 with respect to the restriction
3 < p + q < 7. Without lost of generality, let us consider two different subgraphs
T n−1, T n ∈ RD such that F n−1 and F n have configurations E1 and E3, respectively.
Thus, by fixing the graph G∗ ∪ T n−1 ∪ T n, we have

crD(G∗ + Pn) ≥ crD(K5,n−2) + crD(K5,n−2, G∗ ∪ T n−1 ∪ T n)
+ crD(G∗ ∪ T n−1 ∪ T n)

≥ 4
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 7(r − 2) + 5(li + lj) + 6(n − r − li − lj) + 4

= 4
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 6n + r − li − lj − 10

≥ 4
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 6n +

⌈⌈ n
2 ⌉ + 1

2

⌉
− 2

⌊⌊ n+2
2 ⌋ − 1

2

⌋
− 10

≥ 4
⌊n

2

⌋⌊n − 1
2

⌋
+ n +

⌊n

2

⌋
+ 1.
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Due to the symmetry, the proof proceeds in the similar way also for the remaining
cases of two different configurations {E1, E4}, {E2, E3}, and {E2, E4}.

c) ND = {Ep} for only one p ∈ {1, 2, 3, 4}. Without lost of generality, we can
assume that T n ∈ RD with the configuration E1 of the subgraph F n. By fixing the
graph G∗ ∪ T n, we have

crD(G∗ + Pn) ≥ crD(K5,n−1) + crD(K5,n−1, G∗ ∪ T n) + crD(G∗ ∪ T n)

≥ 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 4(r − 1) + 3li + 4(n − r − li) + 1

= 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 4n − li − 3

≥ 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 4n −

⌊⌊ n+2
2 ⌋ − 1

2

⌋
− 3

≥ 4
⌊n

2

⌋⌊n − 1
2

⌋
+ n +

⌊n

2

⌋
+ 1.

Thus, it was shown in all mentioned cases that there is no good drawing D of the
graph G∗ + Pn with fewer than 4

⌊
n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
+ 1 crossings. This completes

the proof of Theorem 2.4.

3. THE CROSSING NUMBER OF G5
16 + Pn

Theorem 3.1 ([26, Corollary 4.1]). cr(G5
16 + Dn) = 4

⌊
n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
for n ≥ 1.

In Figure 4, let G5
16 be the graph obtained from G∗ by adding the edge v2v5 in the

subdrawing in Figure 1(a).

Fig. 4. The graph G5
16 by adding new edge to the graph G∗

Since we are able to add this edge to the graph G∗ without additional crossings
in Figure 2 and Figure 3, the drawings of the graph G5

16 + P2 with 3 crossings and
the graph G5

16 + Pn, n ≥ 3, with 4
⌊

n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
+ 1 crossings are obtained,

respectively. On the other hand, G∗ + Pn is a subgraph of G5
16 + Pn, and therefore,

cr(G5
16 + Pn) ≥ cr(G∗ + Pn). Thus, the next results are obvious.

Corollary 3.2. cr(G5
16 + P2) = 3.

Corollary 3.3. cr(G5
16 + Pn) = 4

⌊
n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
+ 1 for n ≥ 3.
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4. THE CROSSING NUMBER OF G5
18 + Pn

Let G5
18 be the graph obtained by removing two edges incident with the same vertex

from the complete graph K5. Since the graph G5
18 contains the complete graph K4 as

a subgraph, all possible good drawings of G5
18 can be obtained from the drawings of

the graph G∗ by adding two new edges incident with the same vertex. In the rest of
the paper, suppose that let v5 be the vertex notation of this vertex of degree 2 in all
considered good subdrawing of the graph G5

18.

Theorem 4.1 ([26], Corollary 4.1). cr(G5
18 + Dn) = 4

⌊
n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
for n ≥ 1.

Lemma 4.2. cr(G5
18 + P2) = 5 and cr(G5

18 + P3) = 10.

Proof. Notice that the graphs G5
18 +P2 and G5

18 +P3 are isomorphic to the join product
of the cycle C3 with the graphs G4

9 and G5
17, respectively. It was proven in [12] and [25]

that cr(G4
9 + C3) = 5 and cr(G5

17 + C3) = 10, respectively, and so cr(G5
18 + P2) = 5

and cr(G5
18 + P3) = 10.

Theorem 4.3. cr(G5
18 + Pn) = 4

⌊
n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
+ 2 for n ≥ 2.

Proof. Lemma 4.2 confirms this result for n = 2 and n = 3. Figure 5 offers the drawing
of the graph G5

18 + Pn with exactly 4
⌊

n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
+ 2 crossings.

v
1

v
3

v
4

v
2

v
5

_⌈ ⌉t n
2
+1

_⌈ ⌉t n
2

t1

tn

Fig. 5. The good drawing of G5
18 + Pn, n ≥ 2, with 4

⌊
n
2

⌋⌊
n−1

2

⌋
+ n +

⌊
n
2

⌋
+ 2 crossings

Thus, cr(G5
18 + Pn) ≤ 4

⌊
n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
+ 2. We prove the reverse inequality

by induction on n. Suppose now that, for some n ≥ 4, there is a drawing D with

crD(G5
18 + Pn) < 4

⌊n

2

⌋⌊n − 1
2

⌋
+ n +

⌊n

2

⌋
+ 2, (4.1)

and that

cr(G5
18 + Pm) = 4

⌊m

2

⌋⌊m − 1
2

⌋
+ m +

⌊m

2

⌋
+ 2 for any integer 3 ≤ m < n. (4.2)
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As the graphs G∗ + Dn and G∗ + Pn are some subgraphs of the graph G5
18 + Pn, by

Theorems 2.1 and 2.4, the edges of G5
18+Pn are crossed exactly 4

⌊
n
2

⌋⌊
n−1

2
⌋
+n+

⌊
n
2

⌋
+1

times, and therefore, neither of the two edges of G5
18 incident with the vertex v5 is

crossed and at most one edge of the path P ∗
n can be crossed in D. Moreover, if

r = |RD| and s = |SD|, the assumption (4.1) together with the well-known fact
cr(K5,n) = 4

⌊
n
2

⌋⌊
n−1

2
⌋

imply that in D:

crD(G5
18) +

∑

T i∈RD∪SD

crD(G5
18, T i) +

∑

T i ̸∈RD∪SD

crD(G5
18, T i) ≤ n +

⌊n

2

⌋
+ 1,

i.e.,
crD(G5

18) + 0r + 1s + 2(n − r − s) ≤ n +
⌊n

2

⌋
+ 1. (4.3)

This forces that 2r + s ≥
⌈

n
2

⌉
− 1 + crD(G5

18), that is, r + s ≥ 1, and so there is at
least one subgraph T i by which the edges of G5

18 are crossed at most once. Now, we
will deal with the possibilities of obtaining a subgraph T i ∈ RD ∪ SD in the considered
drawing D and we will show that in all cases a contradiction with the assumption (4.1)
is obtained.

Case 1. We suppose the subdrawing with the vertex notation of G∗ in such a way
as shown in Figure 1(a). The vertex v5 cannot be adjacent with the vertex v3, and
therefore, two possible subcases may occur:

1) The vertex v5 is not adjacent with the vertex v1, that is, v2v5 and v4v5 are two
edges of the graph G5

18. Since there is no possibility to obtain a subdrawing of G5
18 ∪T i

for a T i ∈ RD, there are at least
⌈

n
2

⌉
− 1 subgraphs T i by which the edges of G5

18
are crossed exactly once. For a subgraph T i ∈ SD, the vertex ti must be placed in
the region with four vertices v1, v2, v4, and v5 of the graph G5

18 on its boundary.
There are two possibilities to obtain the subdrawing of F i = G5

18 ∪ T i depending on
which edge of the graph G5

18 is crossed by tiv3, but the same discussion will be used
for both possible subdrawings. If all vertices of the path P ∗

n are placed in this same
region of subdrawing of G5

18, then it is not difficult to verify in five possible regions of
D(G5

18 ∪ T i) that crD(G5
18 ∪ T i, T j) ≥ 4 holds for each subgraph T j , j ̸= i. By fixing

the subgraph G5
18 ∪ T i, we have

crD(G5
18 + Pn) ≥ crD(K5,n−1) + crD(K5,n−1, G5

18 ∪ T i) + crD(G5
18 ∪ T i)

≥ 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 4(n − 1) + 1

≥ 4
⌊n

2

⌋⌊n − 1
2

⌋
+ n +

⌊n

2

⌋
+ 2.

This contradicts the assumption of D. If all vertices of the path P ∗
n are not placed in

this considered region, they must be placed in the region with three vertices either
v1, v2, v3 or v1, v3, v4 of the graph G5

18 on its boundary, because there is at most one
crossing on the edges of P ∗

n and neither of the edges v2v5, v4v5 is crossed in D. Without
lost generality, based on their symmetry, let the edge v1v2 be crossed by some edge of
the path P ∗

n , that is, there is a vertex tj placed in the region v1, v2, v3 of G5
18 on its
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boundary. Let us denote by H the subgraph of G5
18 with the vertex set V (G5

18), and
the edge set E(G5

18) \ {v1v2, v1v3, v1v4, v2v3}. Since the exact value for the crossing
number of the graph H + Dn is given in [23], i.e., cr(H + Dn) = 4

⌊
n
2

⌋⌊
n−1

2
⌋

+
⌊

n
2

⌋
,

the edges of H +Dn are crossed at least 4
⌊

n
2

⌋⌊
n−1

2
⌋

+
⌊

n
2

⌋
times in D. As the subgraph

T j crosses edges of the cycle v1v2v3v1 twice, we obtain

crD(G5
18 + Pn) = crD(H + Dn) + crD(H + Dn, G5

18 − H) + crD(G5
18, Pn)

≥ 4
⌊n

2

⌋⌊n − 1
2

⌋
+

⌊n

2

⌋
+ (n + 1) + 1

= 4
⌊n

2

⌋⌊n − 1
2

⌋
+ n +

⌊n

2

⌋
+ 2,

where G5
18 − H is the graph difference of graphs G5

18 and H. Hence, the discussed
drawing contradicts the assumption of D again.

2) The vertex v5 is adjacent with the vertex v1, that is, v1v5 and vkv5 are the edges
of the graph G5

18 for only one k ∈ {2, 4}. The proof proceeds in the same way as in
the previous subcase.

Case 2. We consider the subdrawing of G∗ given in Figure 1(b). In this case, both
edges of the graph G5

18 incident with the vertex v5 are uniquely designated as v1v5
and v2v5. Because no region is incident to all vertices in D(G5

18), there is no possibility
to obtain a subdrawing of G5

18 ∪ T i for a T i ∈ RD. As r = 0, there are at least
⌈

n
2

⌉

subgraphs T i whose edges cross the edges of G5
18 just once. For a T i ∈ SD, the vertex

ti is placed in the region with four vertices v1, v2, v3, and v4 of the graph G5
18 on

its boundary. This enforces that the edge v1v2 of G5
18 must be crossed by the edge

tiv5 and the subgraph F i = G5
18 ∪ T i is uniquely represented by rotD(ti) = (14325).

Then, crD(G5
18 ∪ T i, T j) ≥ 1 + 4 = 5 holds for any T j ∈ SD with j ̸= i provided that

rotD(ti) = rotD(tj). Moreover, it is not difficult to verify in ten possible regions of
D(G5

18 ∪ T i) that crD(G5
18 ∪ T i, T k) ≥ 3 is true for any subgraph T k ̸∈ SD. Thus, by

fixing the subgraph G5
18 ∪ T i, we have

crD(G5
18 + Pn) ≥ crD(K5,n−1) + crD(K5,n−1, G5

18 ∪ T i) + crD(G5
18 ∪ T i)

≥ 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 5(s − 1) + 3(n − s) + 1 + 1

= 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 3n + 2s − 3

≥ 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 3n + 2

⌈n

2

⌉
− 3

≥ 4
⌊n

2

⌋⌊n − 1
2

⌋
+ n +

⌊n

2

⌋
+ 2.

Case 3. We consider the subdrawing of G∗ given in Figure 1(c). In this case, the
vertex v5 cannot be adjacent with both vertices vk and vk+2, for some k ∈ {1, 2},
otherwise, there is no possibility of obtaining a subgraph T i from the nonempty
set RD ∪ SD (the edges vkv5 and vk+2v5 cannot be crossed in D). Without lost of
generality, let v1v5 and v2v5 be two edges of the graph G5

18. Since the set SD is empty,
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the vertex ti of a subgraph T i ∈ RD must be placed in the region with five vertices v1,
v2, v3, v4, and v5 of the graph G5

18 on its boundary. This enforces that the subgraph
F i = G5

18 ∪ T i is uniquely represented by rotD(ti) = (14325), and we can also easy to
verify in eight possible regions of D(G5

18 ∪ T i) that crD(G5
18 ∪ T i, T j) ≥ 4 holds for

any subgraph T j , j ̸= i. Thus, by fixing the subgraph G5
18 ∪ T i, we have

crD(G5
18 + Pn) ≥ crD(K5,n−1) + crD(K5,n−1, G5

18 ∪ T i) + crD(G5
18 ∪ T i)

≥ 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 4(n − 1) + 1

≥ 4
⌊n

2

⌋⌊n − 1
2

⌋
+ n +

⌊n

2

⌋
+ 2.

We have shown, in all cases, that there is no good drawing D of the graph G5
18 +Pn

with fewer than 4
⌊

n
2

⌋⌊
n−1

2
⌋

+ n +
⌊

n
2

⌋
+ 2 crossings. The proof of Theorem 4.3

is done.

5. CONCLUSION

Determining the crossing number of the join products G + Dn and G + Pn is an
essential step in establishing the so far unknown value of the number of crossings of the
graph G + Cn, where Cn is the cycle on n vertices. Using the results in Theorems 2.4
and 4.3, Corollary 3.3, and the optimal drawings of G∗ + Pn and G5

18 + Pn in Fig-
ures 3 and 5, we are able to postulate that the crossings numbers of G∗ +Cn, G5

16 +Cn,
and G5

18 +Cn are at most two more than G∗ +Pn, G5
16 +Pn, and G5

18 +Pn, respectively.
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