PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of the structure break point for data with changing variance

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Identyfikacja punktu zmiany reżimu dla niezależnych danych o zmiennej wariancji
Języki publikacji
EN
Abstrakty
EN
In this paper, we discuss the problem of the structure break point detection for data with changing variance. Considering the limitations and advantages of five well-known techniques, we propose a hybrid algorithm dedicated to the considered problem. The new method enables us to detect break point, even if the data exhibit non-Gaussian characteristics and the small differences between variances in separate segments occur. The efficiency is verified for simulated data from three general classes of distributions, namely platykurtic, leptokurtic and mesokurtic classes represented here by Gaussian, Laplace, Student's t, and generalized Gaussian distributions. The simulation study is supported by real data analysis.
PL
W artykule omówiono problem detekcji punktu zmiany reżimu dla danych o zmiennej wariancji. Uwzględniając ograniczenia i zalety pięciu znanych technik, zaproponowano hybrydowe podejscie dla omawianego problemu. Nowa metoda umożliwia wykrycie punktu zmiany, nawet jeśli dane wykazują charakterystykę niegaussowską i występują niewielkie różnice pomiędzy wariancjami w poszczególnych segmentach. Skuteczność metody jest weryfikowana dla danych symulowanych pochodzących z trzech ogólnych klas rozkładów, mianowicie platykurtycznych, leptokurtycznych oraz mezokurtycznych reprezentowanych tutaj przez rozkład normalny, Laplace'a, t-Studenta oraz uogólniony rozkład normalny. Badania symulacyjne poparte są analizą danych rzeczywistych.
Rocznik
Strony
65--106
Opis fizyczny
Bibliogr. 84 poz., rys., tab., wykr.
Twórcy
  • studentka Wrocław University of Science and Technology Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
  • Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370
Bibliografia
  • [1] A. Amiri, S. T. Niaki, and A. T. Moghadam. A probabilistic artificial neural network-based procedure for variance change point estimation. Soft Comput., 19(3):691?700, mar 2015.
  • [2] R. Andre-Obrecht. A new statistical approach for the automatic segmentation of continuous speech signals. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(1):29-40, 1988.
  • [3] J. Bai. Estimating multiple breaks one at a time. Econometric Theory, 13(3):315-352, 1997.
  • [4] P. J. Brockwell and R. A. Davis. Time series: theory and methods. Springer Ser. Stat. Springer, New York, NY, 1987.
  • [5] S. Camargo, S. M. Duarte Queirós, and C. Anteneodo. Nonparametric segmentation of nonstationary time series. Phys. Rev. E, 84:, 046702, 2011.
  • [6] C. H. Chen. On a segmentation algorithm for seismic signal analysis. Geoexploration, 23(1):35-40, 1984.
  • [7] J. Chen and A. Gupta. Change point analysis of a Gaussian model. Statistical Papers, 40(3):323-333, 1999.
  • [8] J. Chen and A. K. Gupta. Parametric statistical change point analysis. With applications to genetics, medicine, and finance. Boston, MA: Birkhäuser, 2nd revised and expanded ed. edition, 2012.
  • [9] T.-L. Cheng. An eficient algorithm for estimating a change-point. Statistics & probability letters, 79(5):559-565, 2009.
  • [10] C. Chiaruttini and V. Roberto. Automation of seismic network signal interpolation: an artificial intelligence approach. Geoexploration, 11(12): 327-338, 1988.
  • [11] H. Cho and P. Fryzlewicz. Multiple-change-point detection for high dimensional time series via sparsified binary segmentation. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 77(2):475-507, 2015.
  • [12] J. Crossman, H. Guo, Y. Murphey, and J. Cardillo. Automotive signal fault diagnostics - part I: signal fault analysis, signal segmentation, feature extraction and quasi-optimal feature selection. IEEE Transactions on Vehicular Technology, 52(4):1063-1075, 2003.
  • [13] R. D'Agostino and E. S. Pearson. Tests for departure from normality. Empirical results for the distributions of b2 and √b1. Biometrika, 60:613-622, 1973.
  • [14] R. B. D'Agostino. An omnibus test of normality for moderate and large size samples. Biometrika, 58:341-348, 1971.
  • [15] A. W. Edwards and L. L. Cavalli-Sforza. A method for cluster analysis. Biometrics, pages 362-375, 1965.
  • [16] C. Estarellas and L. Serra. Resonant Anderson localization in segmented wires. Physical Review E, 93(3):32-105, 2016.
  • [17] J. J. Filliben. e-handbook of statistical methods, 2012. URL http://www.itl.nist.gov/div898/handbook/.
  • [18] P. Fryzlewicz. Wild binary segmentation for multiple change-point detection. The Annals of Statistics, 42(6):2243-2281, 2014.
  • [19] F. Gabbanini, M. Vannucci, G. Bartoli, and A. Moro. Wavelet packet methods for the analysis of variance of time series with application to crack widths on the Brunelleschi dome. Journal of Computational and Graphical Statistics, 13(3):639-658, 2004.
  • [20] J. Gaby and K. Anderson. Hierarchical segmentation of seismic waveforms using afinity. Geoexploration, 23(1):1-16, 1984.
  • [21] J. Gajda, G. Sikora, and A. Wyłomańska. Regime variance testing - a quantile approach. Acta Physica Polonica B, 44(5):1015-1035, 2013.
  • [22] R. Gedda. Interactive change point detection approaches in time-series. Master's thesis, Chalmers University of Technology, Gothenburg, Sweden and Mannheim, Germany, Sept. 2021. URL https://hdl.handle.net/ 20.500.12380/302356. In cooperation with ABB Corporate Research Centre, Germany.
  • [23] A. Grzesiek, R. Zimroz, P. Sliwinski, N. Gomolla, and A. Wyłomańska. Long term belt conveyor gearbox temperature data analysis - statistical tests for anomaly detection. Measurement, 165:12 pp., 2020.
  • [24] A. Grzesiek, K. G¡sior, A. Wyłomańska, and R. Zimroz. Divergence based segmentation algorithm for heavy-tailed acoustic signals with timevarying characteristics. Sensors, 21(24):27, 2021.
  • [25] K. G¡sior, H. Urbańska, A. Grzesiek, R. Zimroz, and A. Wyłomańska. Identification, decomposition and segmentation of impulsive vibration signals with deterministic components - a sieving screen case study. Sensors (Switzerland), 20(19):1-20, 2020.
  • [26] Z. Han, H. Chen, T. Yan, and G. Jiang. Time series segmentation to discover behavior switching in complex physical systems. In C. Aggarwal, Z.-H. Zhou, A. Tuzhilin, H. Xiong, and X. Wu, editors, IEEE International Conference on Data Mining (ICDM), pages 161-170, 2015. Atlantic City, NJ, USA.
  • [27] D. M. Hawkins and Q. Deng. A nonparametric change-point control chart. Journal of Quality Technology, 42(2):165-173, 2010.
  • [28] D. M. Hawkins and K. Zamba. Statistical process control for shifts in mean or variance using a changepoint formulation. Technometrics, 47 (2):164-173, 2005.
  • [29] D. M. Hawkins and K. D. Zamba. A change-point model for a shift in variance. Journal of Quality Technology, 37:21-31, 2005.
  • [30] K. Haynes, I. A. Eckley, and P. Fearnhead. Efficient penalty search for multiple changepoint problems. arXiv preprint arXiv:1412.3617, 2014.
  • [31] L. Horváth, G. Rice, and Y. Zhao. Change point analysis of covariance functions: a weighted cumulative sum approach. J. Multivariate Anal., 189:Paper No. 104877, 23, 2022.
  • [32] C. Inclán and G. C. Tiao. Use of cumulative sums of squares for retrospective detection of changes of variance. J. Amer. Statist. Assoc., 89(427):913-923, 1994.
  • [33] S. Jamali, P. Jönssonv, L. Eklundh, J. Ardö, and J. Seaquist. Detecting changes in vegetation trends using time series segmentation. Remote Sensing of Environment, 156:182-195, 2015.
  • [34] S. Jewell, P. Fearnhead, and D. Witten. Testing for a change in mean after change-point detection. ArXiv Preprint, ArXiv:1910.04291v3:15
  • [35] V. Khanagha, K. Daoudi, O. Pont, and H. Yahia. Phonetic segmentation of speech signal using local singularity analysis. Digital Signal Processing: A Review Journal, 35:8694, 2014. ISSN 1095-4333.
  • [36] R. Killick, P. Fearnhead, and I. A. Eckley. Optimal detection of changepoints with a linear computational cost. Journal of the American Statistical Association, 107(500):1590-1598, 2012.
  • [37] J.-M. Kim, J. Baik, and M. Reller. Detecting the change of variance by using conditional distribution with diverse copula functions. In D. Choi, D. Jang, T. L. Lai, Y. Lee, Y. Lu, J. Ni, P. Qian, P. Qiu, and G. Tiao, editors, Proceedings of the Pacific Rim Statistical Conference for Production Engineering, pages 145-154, Singapore, 2018. Springer Singapore.
  • [38] K. Kim, J. H. Park, M. Lee, and J. W. Song. Unsupervised change point detection and trend prediction for financial time-series using a new cusum-based approach. IEEE Access, 10:34690-34705, 2022.
  • [39] L. Koepcke, G. Ashida, and J. Kretzberg. Single and multiple change point detection in spike trains: comparison of different cusum methods. Frontiers in systems neuroscience, 10:51, 2016.
  • [40] J. Koronacki and J. Mielniczuk. Statystyka dla studentów kierunków technicznych i przyrodniczych. Wydawnictwo Naukowo-Techniczne, 2001.
  • [41] D. Kucharczyk, A. Wyłomanska, J. Obuchowski, R. Zimroz, and M. Madziarz. Stochastic modelling as a tool for seismic signals segmentation. Shock and Vibration, 2016, 2016.
  • [42] C. N. Lee and H. C. Ong. Bayesian analysis of change point problems for time series data, volume 1750(1), page p.6. AIP Publishing LLC, 2016.
  • [43] M. Lopatka, C. Laplanche, O. Adam, J. Motsch, and J. Zarzycki. Nonstationary time-series segmentation based on the Schur prediction error analysis. In IEEE Workshop on Statistical Signal Processing Proceedings, pages 251-255, 2005.
  • [44] K.-P. Lu and S.-T. Chang. Detecting change-points for shifts in mean and variance using fuzzy classification maximum likelihood change-point algorithms. Journal of Computational and Applied Mathematics, 308: 447-463, 2016.
  • [45] R. Makowski and R. Hossa. Automatic speech signal segmentation based on the innovation adaptive filter. International Journal of Applied Mathematics and Computer Science, 24(2):259-270, 2014.
  • [46] W. Mensi, S. Hammoudeh, and S.-M. Yoon. Structural breaks, dynamic correlations, asymmetric volatility transmission, and hedging strategies for petroleum prices and usd exchange rate. Energy Economics, 48:46-60, 2015.
  • [47] M. Messer. Bivariate change point detection: joint detection of changes in expectation and variance. Scandinavian Journal of Statistics, 49(2): 886-916, 2022.
  • [48] A. Michalak, J. Wodecki, M. Drozda, A. Wyłomańska, and R. Zimroz. Model of the vibration signal of the vibrating sieving screen suspension for condition monitoring purposes. Sensors (Switzerland), 21(1):1-17, 2021.
  • [49] P. Micó, M. Mora, D. Cuesta-Frau, and M. Aboy. Automatic segmentation of long-term ECG signals corrupted with broadband noise based on sample entropy. Computer Methods and Programs in Biomedicine, 98(2): 118-129, 2010.
  • [50] D. Montiel, H. Cang, and H. Yang. Quantitative characterization of changes in dynamical behavior for single-particle tracking studies. The Journal of Physical Chemistry, 110(40):19763-70, 2006.
  • [51] N. Mordant, A. Crawford, and E. Bodenschatz. Three-dimensional Structure of the Lagrangian Acceleration in Turbulent Flows. Physical Review Letters, 93(21):214-501, 2004.
  • [52] S. Nadarajah. A generalized normal distribution. Journal of Applied Statistics, 32(7):685-694, 2005.
  • [53] Y. Naruse, K. Takiyama, M. Okada, and H. Umehara. Statistical method for detecting phase shifts in alpha rhythm from human electroencephalogram data. Physical Review E, 87(4):042708, 2013.
  • [54] Y. S. Niu and H. Zhang. The screening and ranking algorithm to detect DNA copy number variations. Ann. Appl. Stat., 6(3):1306-1326, 2012.
  • [55] N. Omranian, B. Mueller-Roeber, and Z. Nikoloski. Segmentation of biological multivariate time-series data. Scientific Reports, 5, 2015.
  • [56] E. S. Page. Continuous inspection schemes. Biometrika, 41:100-115, 1954.
  • [57] E.-V. Pikoulis and E. Psarakis. A new automatic method for seismic signals segmentation. In Acoustics, Speech, and Signal Processing, 1988. ICASSP-88., 1988 International Conference on, 2012.
  • [58] A. Pitts and P. Rivas. Finding time series breakpoints with fully connected neural networks. In Proceedings on the International Conference on Artificial Intelligence (ICAI), pages 352-357. The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing, 2019.
  • [59] T. Popescu. Signal segmentation using changing regression models with application in seismic engineering. Digital Signal Processing: A Review Journal, 24:14-26, 2014.
  • [60] A. Puchalski and I. Komorska. Stable distributions, generalised entropy, and fractal diagnostic models of mechanical vibration signals. Diagnostyka, 18(4):103-110, 2017.
  • [61] R. Qin and J. Ma. An efficient algorithm to estimate the change in variance. Economics Letters, 168:15-17, 2018.
  • [62] C. Raphael. Automatic segmentation of acoustic musical signals using Hidden Markov Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(4):360-370, 1999.
  • [63] C. Rohrbeck. Detection of changes in variance using binary segmentation and optimal partitioning. Allen Institute for AI: Seattle, WA, USA, p. 6, 2013.
  • [64] G. J. Ross. Modelling financial volatility in the presence of abrupt changes. Physica A: Statistical Mechanics and its Applications, 392(2):350-360, 2013.
  • [65] G. J. Ross and N. M. Adams. Two nonparametric control charts for detecting arbitrary distribution changes. Journal of Quality Technology, 44(2):102-116, 2012.
  • [66] G. J. Ross, D. K. Tasoulis, and N. M. Adams. Nonparametric monitoring of data streams for changes in location and scale. Technometrics, 53(4):379-389, 2011.
  • [67] A. Sansó, J. Carrion, and V. Aragó. Testing for changes in the unconditional variance of financial time series. Revista de Economía Financiera, 2004, vol. 4, p. 32-52, 2004.
  • [68] A. J. Scott and M. Knott. A cluster analysis method for grouping means in the analysis of variance. Biometrics, 507-512, 1974.
  • [69] G. Sikora, A. Wyłomańska, and D. Krapf. Recurrence statistics for anomalous diffusion regime change detection. Computational Statistics & Data Analysis, 128:380-394, 2018.
  • [70] M. Sippl. Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. Journal of Molecular Biology, 213(4):859-883, 1990.
  • [71] B. Stawiarski. Selected techniques of detecting structural breaks in financial volatility. e-Finanse: Financial Internet Quarterly, 11(1):32-43, 2015.
  • [72] A. Steland. Testing and estimating change-points in the covariance matrix of a high-dimensional time series. J. Multivariate Anal., 177:104582, 24, 2020.
  • [73] A. Steland and E. Rafajłowicz. Decoupling change-point detection based on characteristic functions: Methodology, asymptotic, subsampling and application. Journal of Statistical Planning and Inference, 145:49-73, 2014.
  • [74] The MathWorks, Inc. Matlab documentation, 2006.
  • [75] P. Theodor and D. Cioboat. Performance evaluation of some change detection and data segmentation algorithms. International Journal of Mathematical and Computational Methods, 1:236, 2016.
  • [76] C. Truong, L. Oudre, and N. Vayatis. Selective review of offline change point detection methods. Signal Processing, 167:107299, 2020.
  • [77] Y. Vaezi and M. Van der Baan. Comparison of the sta/lta and power spectral density methods for microseismic event detection. Geophysical Journal International, 203(3):1896-1908, 2015.
  • [78] K. Wenger, C. Leschinski, and P. Sibbertsen. Change-in-mean tests in long-memory time series: a review of recent developments. AStA Advances in Statistical Analysis, 103:237-256, 2019.
  • [79] B. Whitcher, S. Byers, P. Guttorp, and D. Percival. Testing for homogeneity of variance in time series: Long memory, wavelets, and the Nile river. Water Resources Research, 38(5):12-16, 2002.
  • [80] A. Wyłomańska, D. R. Iskander, and K. Burnecki. Omnibus test for normality based on the Edgeworth expansion. Plos One, 15(6), 2020.
  • [81] A. Wyłomańska and R. Zimroz. Signal segmentation for operational regimes detection of heavy duty mining mobile machines - a statistical approach. Diagnostyka, 15(2):33-42, 2014.
  • [82] C. Zhang, F. Gao, and R. Zhang. Segmentation algorithm for DNA sequences. Physical Review E, 72(4):041917, 2005.
  • [83] C. Zhou, C. Zou, Y. Zhang, and Z. Wang. Nonparametric control chart based on change-pointmodel. Statistical Papers, 50(1):13-28, 2009.
  • [84] R. Zimroz, M. Madziarz, G. Żak, A. Wyłomańska, and J. Obuchowski. Seismic signal segmentation procedure using time- frequency decomposition and statistical modelling. Journal of Vibroengineering, 17(6):3111-3120, 2015.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-460532ea-78e0-455a-896e-17dd8d36ff72
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.