PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Positron annihilation studies of high-manganese steel deformed by rolling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Polish Seminar on Positron Annihilation (42 nd ; 29.06-01.07.2016 ; Lublin, Poland)
Języki publikacji
EN
Abstrakty
EN
Positron annihilation spectroscopy (PAS) has been used to study the annealing behavior of cold rolled Fe – 21 wt% Mn steel with 0.05 wt% C. After the initial annealing of defects shown by Doppler broadening of the annihilation line, a slight increase in the annihilation line shape parameter, i.e., the so-called S parameter and then its decrease in the temperature range between 225◦C and 450◦C indicates generation of new defects and their subsequent annealing. This temperature range coincides with X-ray diffraction measurements, which indicate reversion of deformation-induced ε-martensite. However, for annealing in this temperature range with slow cooling of the sample, the formation of ferrite already starts. The results are compared with our previous results for deformed austenitic stainless steel 1.4301 (EN) where only reversion of deformation-induced α'-martensite was detected.
Czasopismo
Rocznik
Strony
709--712
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
  • Institute of Nuclear Physics of the Polish Academy of Sciences, 152 Radzikowskiego Str., 31-342 Kraków, Poland, Tel.: +48 12 662 8370, Fax: +48 12 662 8458
autor
  • Institute of Nuclear Physics of the Polish Academy of Sciences, 152 Radzikowskiego Str., 31-342 Kraków, Poland, Tel.: +48 12 662 8370, Fax: +48 12 662 8458
autor
  • AGH University of Science and Technology, 30 Mickiewicza Ave., 90-059 Kraków, Poland
Bibliografia
  • 1. Gutierrez-Urrutia, I., & Raabe, D. (2012). Grain size effect on strain hardening in twinning-induced plasticity steels. Scripta Mater., 66, 992–996. DOI:10.1016/j.scriptamat.2012.01.037.
  • 2. Yakubtsov, I. A., Ariapour, A., & Perovic, D. D. (1999). Effect of nitrogen on stacking fault energy of f.c.c. iron-based alloys. Acta Mater., 47, 1271–1279.DOI: 10.1016/S1359-6454(98)00419-4.
  • 3. Adler, P. H., Olson, G. B., & Owen, W. S. (1986). Strain hardening of hadfield manganese steel. Metall. Mater. Trans. A-Phys. Metal. Mater. Sci., 17, 1725–1737. DOI:10.1007/BF02817271.
  • 4. Allain, S., Chateau, J. P., Dahmoun, D., & Bouaziz, O. (2004). Modeling of mechanical twinning in a high manganese content austenitic steel. Mater. Sci. Eng. A, 387/389, 272–276. DOI: 10.1016/j.msea.2004.05.038.
  • 5. Miodownik, A. P. (1998). The role of anti-ferromagnetism on gamma-epsilon transformation in Fe-Mn alloys. Z. Metallkunde, 89, 840–847.
  • 6. Schumann, H. (1972). Distribution of phases in Fe-Mn-C system after deformation. Neue Hutte, 17, 605–609.
  • 7. Frommeyer, G., Brux, U., & Neumann, P. (2003). Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ Int., 43, 438–446. DOI: 10.2355/isijinternational.43.438.
  • 8.Dumay, A., Chateau, J. -P., Allain, S., Migot, S., & Bouaziz, O. (2008). Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel. Mater. Sci. Eng. A, 483/484, 184–187. DOI: 10.1016/j.msea.2006.12.170.
  • 9.Wang, X. D., Huang, B. X., & Rong, Y. H. (2008).On deformation mechanism of twinning-induced plasticity steel. Phil. Mag. Lett., 88, 845–851. DOI:10.1080/09500830802438123.
  • 10.http://www.calphad.com/iron-manganese.html.1
  • 11.Rabinkin, A. (1979). On magnetic contributions to γ→ε phase transformations in Fe-Mn alloys. Calphad,3, 77–84. DOI: 10.1016/0364-5916(79)90008-7.
  • 12. Dryzek, E., Sarnek, M., & Wróbel, M. (2014). Reverse transformation of deformation-induced martensite in austenitic stainless steel studied by positron annihilation. J. Mater. Sci., 49, 8449–8458. DOI: 10.1007/s10853-014-8555-y.
  • 13. De Cooman, B. C., Chin, K., & Kim, J. (2011). High Mn TWIP steels for automotive applications. In M. Chiaberge (Ed.), New trends and developments in automotive system engineering, InTech (pp. 101–128),from http://www.intechopen.com/books/new-trendsand-developments-in-automotive-system-engineering/high-mn-twip-steels-for-automotive-applications.
  • 14. Tavares, S. S. M., Lafuente, A., Miraglia, S., & Fruchart, D. (2002). X-ray diffraction and magnetic analysis of deformation induced martensites in a Fe-17Mn-1.9Al-0.1C steel. J. Mater. Sci., 37, 1645–1648. DOI: 10.1023/A:1014948831730.
  • 15. Kliber, J., Kursa, T., Drozd, K., Hajduchová, L., & Pešlová, F. (2012). Metallographic exploration of twip steel. In 24th International Conference on Metallurgy and Material METAL 23–25 May 2012 (pp. 446–452).Brno, Česká Republika.
  • 16. Dryzek, E., Sarnek, M., & Siemek, K. (2013). Annealing behavior of plastically deformed stainless steel 1.4307 studied by positron annihilation methods.Nukleonika, 58, 213−217.
  • 17. Dryzek, E., & Sarnek, M. (2014). Reverse transformation of deformation induced martensite in austenitic stainless steel studied by positron annihilation. Acta Phys. Pol. A, 125, 710–713. DOI: 10.12693/APhysPolA.125.710.
  • 18. Padilha, A. F., Plaut, R. L., & Rios, P. R. (2003).Annealing of cold-worked austenitic stainless steels. ISIJ Int., 43, 135–143. DOI: 10.2355/isijinternational. 43.135.
  • 19. Lü, Y., Hutchinson, B., Molodov, D. A., & Gottstein, G. (2010). Effect of deformation and annealing on the formation and reversion of ε-martensite in an Fe-Mn-C alloy. Acta Mater., 58, 3079–3090. DOI: 10.1016/j.actamat.2010.01.045.
  • 20. Lü, Y., Molodov, D. A., & Gottstein, G. (2011). Recrystallization kinetics and microstructure evolution during annealing of a cold-rolled Fe-Mn-C alloy. Acta Mater., 59, 229–3243. DOI: 10.1016/j.actamat.2011.01.063.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46040217-83b0-4ba5-b71f-c8e2282456b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.