Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Helmholtz coil constant (𝑘ℎ) is a crucial standard in magnetic moment measurement devices for permanent magnet materials. To overcome the problem of low accuracy of the direct-current (DC) calibration method, this study used a constant sinusoidal current in the Helmholtz coil and measured the induced voltage of the detection coil with known coil turns and coil area. Subsequently, the 𝑘ℎ was calculated. The noise signal deduction rate in the induction voltage of the detection coil was greater than 99%, its influence on the induction voltage is less than 0.005%, and the repeatability of the calibration results is 0.003% (1𝛿). The results reveal that the alternating current (AC) method and orthogonal calculation (OC) can accurately measure the valid values of the voltage signal under the influence of the spatial stray field during the calibration of 𝑘ℎ.
Czasopismo
Rocznik
Tom
Strony
549--561
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr., wzory
Twórcy
autor
- Magnetic Materials Measurement Laboratory, National Institute of Metrology, Beijing 100029, China
- University of Science and Technology Beijing, Beijing 100083, China
autor
- Magnetic Materials Measurement Laboratory, National Institute of Metrology, Beijing 100029, China
autor
- Magnetic Materials Measurement Laboratory, National Institute of Metrology, Beijing 100029, China
autor
- Magnetic Materials Measurement Laboratory, National Institute of Metrology, Beijing 100029, China
autor
- University of Science and Technology Beijing, Beijing 100083, China
Bibliografia
- [1] Zhao, Z. N., Lin, J., Zhang, J., Yu, Y., Yuan, B., Fan, C. C., & Liu, J. (2018). Liquid metal enabled flexible electronic system for eye movement tracking. IEEE Sensors Journal, 18(6), 2592-2598. https://doi.org/10.1109/JSEN.2018.2796121
- [2] Li, Z., & Dixon, S. (2016). A closed-loop operation to improve GMR sensor accuracy. IEEE Sensors Journal, 16(15), 6003-6007. https://doi.org/10.1109/JSEN.2016.2580742
- [3] Lapucci, T., Troiano, L., Carobbi, C., & Capineri, L. (2021). Soft and Hard Iron Compensation for the Compasses of an Operational Towed Hydrophone Array without Sensor Motion by a Helmholtz Coil. Sensors, 21(23), 8104. https://doi.org/10.3390/s21238104
- [4] Nelson, I., Gardner, L., Carlson, K., & Naleway, S. E. (2019). Freeze casting of iron oxide subject to a tri-axial nested Helmholtz-coils driven uniform magnetic field for tailored porous scaffolds. Acta Materialia, 173, 106-116. https://doi.org/10.1016/j.actamat.2019.05.003
- [5] Markoulakis, E., Vanderelli, T., & Frantzeskakis, L. (2022). Real time display with the ferrolens of homogeneous magnetic fields. Journal of Magnetism and Magnetic Materials, 541, 168576. https://doi.org/10.1016/j.jmmm.2021.168576
- [6] Pang, H., Duan, L., Quan, W., Wang, J., Wu, W., Fan, W., & Liu, F. (2020). Design of highly uniform three dimensional spherical magnetic field coils for atomic sensors. IEEE Sensors Journal, 20(19), 11229-11236. https://doi.org/10.1109/JSEN.2020.2997800
- [7] Fernquist, J. R., Fu, H. C., & Naleway, S. E. (2022). Improved structural and mechanical performance of iron oxide scaffolds freeze cast under oscillating magnetic fields. Ceramics International, 48(1), 15034-15042. https://doi.org/10.1016/j.ceramint.2022.02.032
- [8] Jiang, J., Yang, L., & Zhang, L. (2021). Closed-loop control of a Helmholtz coil system for accurate actuation of magnetic microrobot swarms. IEEE Robotics and Automation Letters, 6(2), 827-834. https://doi.org/10.1109/LRA.2021.3052394
- [9] Alamgir, A. K. M., Fang, J., Gu, C., & Han, Z. (2005). Square Helmholtz coil with homogeneous field for magnetic measurement of longer HTS tapes. Physica C: Superconductivity, 424(1-2), 17-24. https://doi.org/10.1016/j.physc.2005.04.019
- [10] Alvarez, A. F. R., Franco-Mejia, E., & Pinedo-Jaramillo, C. R. (2012, November). Study and analysis of magnetic field homogeneity of square and circular Helmholtz coil pairs: A Taylor series approximation. In 2012 VI Andean Region International Conference (pp. 77-80). IEEE. https://doi.org/10.1109/Andescon.2012.27
- [11] Watakabe, R., Tanaka, M., Takahashi, Y., Fujiwara, K., Ishihara, Y., & Azuma, D. (2016). Study on standard measurement method of magnetic property of Fe-based amorphous strip - Round Robin test results. IEEE Transactions on Magnetics, 52(5), 1-4. https://doi.org/10.1109/TMAG.2016.2518209
- [12] Ishii, M., & Suzuki, M. (2020, August). Impedance of Helmholtz Coil to Generate Standard AC Magnetic Field in High Frequency. In 2020 Conference on Precision Electromagnetic Measurements (CPEM) (pp. 1-2). IEEE. https://doi.org/10.1109/CPEM49742.2020.9191906
- [13] Yue, L., Cheng, D., Wang, Y., Wang, M., & Zhao, J. (2021). A comprehensive calibration method for non-orthogonal error and scale factor error of triaxial Helmholtz coil. Review of Scientific Instruments, 92(8), 085105. https://doi.org/10.1063/5.0049784
- [14] Mu, Y., Wang, C., Zhang, X., & Xie, W. (2018). A novel calibration method for magnetometer array in nonuniform background field. IEEE Transactions on Instrumentation and Measurement, 68(10), 3677-3685. https://doi.org/10.1109/TIM.2018.2880079
- [15] Liu, Z., Zhang, Q., Pan, M., Shan, Q., Geng, Y., Guan, F., ... & Tian, W. (2016). Distortion magnetic field compensation of geomagnetic vector measurement system using a 3-D Helmholtz coil. IEEE Geoscience and Remote Sensing Letters, 14(1), 48-51. https://doi.org/10.1109/LGRS.2016.2625302
- [16] Li, T., Zhao, X., Zhang, J., Wang, S., & Tan, Z. (2018). A new compensation method for magnetic field distortions based on a 3-D Helmholtz coil. Measurement Science and Technology, 30(1), 015006. https://doi.org/10.1088/1361-6501/aaef04
- [17] Sasayama, T., Gotoh, Y., & Enpuku, K. (2018). Improving tip position-estimation performance of gastric tube by compensating geomagnetic field with offset coils. IEEE Transactions on Magnetics, 54(11), 1-5. https://doi.org/10.1109/TMAG.2018.2846267
- [18] Hou, R. F., Zhang, Z. G., Dai, L., Gong, W. J., & Lin, A. L. (2014). The Calibration method of Helmholtz coils for the permanent Magnet. In Advanced Materials Research (Vol. 1006, pp. 849-852). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMR.1006-1007.849
- [19] Bamer, F., & Bucher, C. (2012). Application of the proper orthogonal decomposition for linear and non-linear structures under transient excitations. Acta Mechanica, 223, 2549-2563. https://doi.org/10.1007/s00707-012-0726-9
- [20] Danlos, A., Ravelet, F., Coutier-Delgosha, O., & Bakir, F. (2014). Cavitation regime detection through Proper Orthogonal Decomposition: Dynamics analysis of the sheet cavity on a grooved convergent-divergent nozzle. International Journal of Heat and Fluid Flow, 47, 9-20. https://doi.org/10.1016/j.ijheatfluidflow.2014.02.001
- [21] Penenko, V., & Tsvetova, E. (2008). Orthogonal decomposition methods for inclusion of climatic data into environmental studies. Ecological Modelling, 217(3-4), 279-291. https://doi.org/10.1016/j.ecolmodel.2008.06.004
- [22] Yu, G., Yu, B., Han, D., & Wang, L. (2013). Unsteady-state thermal calculation of buried oil pipeline using a proper orthogonal decomposition reduced-order model. Applied Thermal Engineering, 51(1-2), 177-189. https://doi.org/10.1016/j.applthermaleng.2012.09.005
- [23] Ly, H. V., & Tran, H. T. (2001). Modeling and control of physical processes using proper orthogonal decomposition. Mathematical and Computer modelling, 33(1-3), 223-236. https://doi.org/10.1016/S0895-7177(00)00240-5
Uwagi
1. This work was supported by the State Administration for Market Regulation of China (No. ANL1912).
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45fdb2e0-f5e6-49f0-97cc-926115e4de52
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.