INŻYNIERIA I APARATURA CHEMICZNA

Paweł SOBIESZUK

e-mail: p.sobieszuk@ichip.pw.edu.pl

Wydział Inżynierii Chemicznej i Procesowej, Politechnika Warszawska, Warszawa

Modelowanie i badania doświadczalne wymiany masy w układach ciecz-gaz w przepływie *Taylora* w mikroreaktorze

Wstęp

Mikroreaktory heterofazowe gaz-ciecz i ciecz-ciecz są szeroko badane i coraz częściej stosowane. Ich podstawową zaletą jest bardzo duża powierzchnia międzyfazowa, rzędu nawet 10 000 m²/m³. Ponadto ich rozmiar charakterystyczny zawarty w przedziale od 10 µm do 1 mm powoduje występowanie dużych gradientów stężeń i temperatury. Obie te cechy intensyfikują wymianę masy, w szczególności w układach wielofazowych.

Hydrodynamika w układach ciecz-gaz różni się od hydrodynamiki aparatów większych. Istnieją wymiarowe i bezwymiarowe mapy przepływu uzyskane w mikrokanałach. Wynika z nich, że najpopularniejszym reżimem przepływu jest, cechujący się dużą stabilnością, przepływ *Taylora*. Wymiana masy w tym reżimie hydrodynamicznym jest bardzo szeroko w literaturze prezentowanym przedmiotem badań. W szczególności występowanie i problem aktywności cienkiego filmu cieczy pomiędzy pęcherzem gazu a ścianą mikrokanału jest szeroko dyskutowany [*Sobieszuk, 2012*]. Obserwuje się coraz szersze zastosowania praktyczne mikroreaktorów gaz-ciecz zarówno w wytwarzaniu konkretnego produktu, jak i w metodach analitycznych.

W pracy przedstawiono porównanie prezentowanych w literaturze korelacji doświadczalnych opisujących współczynnik objętościowy wnikania masy z własnymi wynikami doświadczalnymi oraz z wynikami uzyskanymi na drodze symulacji procesu wymiany masy w układzie ciecz-gaz. Opracowanie prawidłowego modelu matematycznego absorpcji z reakcją chemiczną w przepływie *Taylora* umożliwi prawidłowy dobór warunków procesu.

Wymiana masy w przepływie Taylora w układzie ciecz-gaz

Mechanizmy wymiany masy występujące w przepływie *Taylora* przedstawiono na rys. 1.

Rys. 1. Wymiana masy w przepływie Taylora

W najbardziej ogólnym przypadku wymiana masy pomiędzy pęcherzem gazowym a cieczą odbywa się w następujący sposób:

(1) od pęcherza do ściany kanału poprzez film,

- (1a) od pęcherza do filmu,
- (1b) od filmu do ściany;
- (2) od pęcherza do mostka cieczy;
- (3) z mostka cieczy do ściany kanału poprzez film,

(3a) z mostka cieczy do filmu,

(3b) od filmu do ściany kanału.

Korelacje. W przypadku, gdy ściana pokryta jest katalizatorem (czyli jest aktywna) obserwuje się wszystkie wymienione mechanizmy. W procesach z pasywną ścianą kanału (bez unieruchomionego katalizatora) obserwuje się jedynie mechanizmy (1a) i (2).

W takim układzie na podstawie wyników doświadczalnych *Bercic i Pintar* [1997] zaproponowali następującą korelację określającą objętościowy współczynnik wnikania masy (k_La):

$$k_L a = 0,111 \frac{(\mu_G + \mu_L)^{l,19}}{[(1 - \varepsilon_G)(L_G + L_L)]^{0,57}}$$
(1)

gdzie:

 ε_G – zatrzymanie gazu, u_G , u_L – prędkości pozorne odpowiednio gazu i cieczy.

Stosowanie tej korelacji nie jest proste, gdyż niezbędna jest znajomość długości pęcherzy gazu (L_G) i mostków cieczy (L_L). Pomiar tych charakterystycznych wielkości przepływu *Taylora* wymaga przezroczystego kanału oraz szybkiej kamery zaopatrzonej w specjalny system optyczny. W literaturze funkcjonują korelacje zarówno teoretyczne jak i doświadczalne, na podstawie których można oszacować wartości L_G i L_L [*Qian i Lawal, 2006*].

Podobne ograniczenia ma korelacja zaproponowana prze *Vandu i in.* [2005]:

$$k_L a = 4,5\sqrt{\frac{Du_G}{L_G + L_L}}\frac{1}{d}$$
(2)

gdzie: d – średnica mikrokanału.

Yue i in. [2007] zaproponowali korelację, która nie jest ograniczona znajomością hydrodynamiki przepływu *Taylora*:

$$Sh_{L}ad = 0.084 Re_{G}^{0.213} Re_{L}^{0.937} Sc_{L}^{0.5}$$
(3)

gdzie:

a – powierzchnia międzyfazowa,

k

D – dyfuzyjność,

 $Re_G = u_G d\rho_G / \mu_G$ – liczba *Reynoldsa* dla fazy gazowej,

 $Re_L = u_L d\rho_L / \mu_L$ – liczba Reynoldsa dla fazy ciekłej,

 $Sc_L = \mu_L / \rho_L D$ – liczba *Schmidta* dla fazy ciekłej,

 $Sh_L = k_L d/D$ – liczba *Sherwooda* dla fazy ciekłej.

Kolejna korelacja Yue i in. [2009] zawiera elementy hydrodynamiki przepływu:

$$L_{L_{d}} = \frac{2}{d} \left(\frac{Du_{G}}{L_{G} + L_{L}} \right)^{0.5} \left(\frac{L_{G}}{L_{G} + L_{L}} \right)^{0.3}$$
(4)

Przedstawione korelacje (1)÷(4) otrzymano na podstawie analizy wyników badań doświadczalnych szybkości absorpcji w kanałach o różnych rozmiarach i przekrojach oraz dla różnych układów fizykochemicznych. Z tych powodów ogólne stosowanie prezentowanych korelacji może mieć pewne ograniczenia.

Badania doświadczalne

Materiały i metody. Badano proces absorpcji CO₂ w wodnym buforze węglanowym o składzie: 0,3 M KH₂PO₄ i 0,3 M K₂HPO₄. Absorpcję prowadzono w przepływie *Taylora* w mikrokanale o przekroju kołowym o średnicy 0,4 mm i długości 0,1 m [*Sobieszuk i in., 2011*]. Zastosowano metodę *Danckwertsa* do wyznaczenia powierzchni międzyfazowej i współczynników wnikania masy. Jako katalizator reakcji CO₂ z wodą zastosowano podchloryn sodowy. Stałą szybkości reakcji w zależności od stężenia jonu ClO⁻ zmierzono w absorberze ze strumieniem laminarnym. Badania przeprowadzono stosując zmienne wartości przepływów cieczy i gazu, wpływając w ten sposób na długość pęcherzy gazu i mostków cieczowych, czyli w konsekwencji na powierzchnię międzyfazową.

Porównanie wyników badań doświadczalnych z wartościami $k_L a$ obliczonymi z korelacji (1)÷(4) w zależności od pozornej prędkości przepływu dwufazowego ($u_{TP} = u_G + u_L$) przedstawiono na rys. 2. Jak widać rozbieżności w wartościach $k_L a$ są duże.

Korelacje *Yue i in.* (Równ. 3 i 4) przewidują podobne wartości dla dużych prędkości pozornych różniąc się w przewidywaniach dla mniejszych prędkości. Uzyskane wartości doświadczalne właściwie oscylują pomiędzy wartościami z tych korelacji.

Natomiast korelacje *Bercica i Pintara* [1997] oraz *Vandu i in.* [2005] przewidują zdecydowanie większe wartości objętościowych współczynników wnikania masy po stronie cieczy.

Wobec takich rozbieżności w dalszej części pracy zaprezentowano wyniki symulacji procesu wymiany masy w przepływie *Taylora*.

Rys. 2. Porównanie wartości doświadczalnych i obliczonych objętościowego współczynnika wnikania masy po stronie cieczy w mikrokanałach w zależności od pozornej prędkości przepływu dwufazowego

Symulacje

Obliczenia pola przepływu oraz stężenia prowadzono przy użyciu komercyjnego oprogramowania *Ansys Fluent 14.0.* Dwuwymiarowe siatki obliczeniowe składały się z około 1 200 000 kwadratowych komórek obliczeniowych.

W obliczeniach rozwiązywano jedynie równania opisujące fazę ciągłą, zakładając stałą objętość i stały kształt pęcherza gazowego, określone poprzez pomiary doświadczalne [*Sobieszuk i in., 2011*].

Na powierzchni międzyfazowej założono prędkość osiową równą prędkości pęcherza gazowego u_G , zaś prędkość promieniową równą 0. Bezwymiarowe stężenie na powierzchni międzyfazowej wynosiło 1. Prędkość cieczy na wlocie do układu wynosiła u_L . Zastosowane w obliczeniach parametry procesowe przedstawiono w tab. 1.

Seria	u_G [m/s]	u_L [m/s]	$D \cdot 10^9$ [m ² /s]	$\mu_L \cdot 10^3$ [Pa·s]	$L_G \cdot 10^3$ [m]	$L_L \cdot 10^3$ [m]	δ·10 ⁵ [m]
Α	0,580	0,046	1,636	1,100	3,50	0,17	1,027
В	0,556	0,092	1,548	1,150	1,53	0,40	1,074
C	0,556	0,183	1,504	1,176	1,58	0,34	1,173
D	0,751	0,092	1,548	1,150	1,95	0,17	1,248
Е	0,737	0,183	1,763	1,031	1,60	0,20	1,233
F	0,705	0,270	1,629	1,100	1,48	0,31	1,321
G	0,705	0,354	1,763	1,031	1,66	0,65	1,334
Н	0,672	0,542	1,763	1,031	1,31	0,68	1,438

Tab. 1. Parametry procesowe symulacji

Gęstość roztworu przyjęto jak dla wody. Grubość filmu cieczy (δ) została obliczona na podstawie korelacji *Schwartza* i in., [*1986*]:

$$\frac{\delta}{d} = \frac{0.66Ca^{2/3}}{1+3.33Ca^{2/3}} \tag{5}$$

gdzie:

 $Ca = \mu_L(u_G + u_L)/\sigma) - \text{liczba kapilarna},$

 σ – napięcie powierzchniowe wody.

Przykładowe wyniki symulacji rozkładu bezwymiarowego stężenia wewnątrz mikroreaktora zostały przedstawione na rys. 3.

Rys. 3. Rozkład bezwymiarowego stężenia wewnątrz mikroreaktora, a) seria A, b) seria E, c) seria G

Na rys. 3 widać różnicę pól stężenia pomiędzy kolejnymi pęcherzami gazu występującą w zależności od wielkości pęcherza oraz odległości mostków cieczowych. Można to zauważyć porównując serie E i G (Rys. 3b i 3c). W przypadku serii E kolejny pęcherz omywany jest symetrycznie, zaś w przypadku serii G, za pęcherzem pojawia się wir, powodujący, że kolejny pęcherz omywany jest nierównomiernie.

Porównanie wyników doświadczalnych z wynikami symulacji. Na rys. 4 przedstawiono porównanie wartości średniego objętościowego współczynnika wnikania masy po stronie cieczy wyznaczonego doświadczalnie i teoretycznego uzyskanego z obliczeń CFD.

Dla większości serii uzyskano dobrą zgodność wyników. Uzyskane wyniki teoretyczne znajdują również potwierdzenie w danych literaturowych dotyczących modelowania CFD [*Shao i in.,* 2010].

Rys. 4. Porównanie wyników doświadczalnych z wynikami symulacji

Różnice między wynikami

przedstawionymi na rys. 4 pojawiają się dla wyższych wartości prędkości pozornej. Problem ten może być związany z niedostatecznie gęstą siatką numeryczną.

Wnioski

Interesujące wnioski płyną z porównania wyników uzyskanych z korelacji przedstawionych na rys. 2 z wynikami uzyskanymi z obliczeń CFD. Bardzo dobrą zgodność otrzymano dla korelacji *Yue i in.* [2007]. Wspomniana korelacja jako jedyna bierze pod uwagę zmienność warunków hydrodynamicznych panujących w układzie.

Przeprowadzone obliczenia są pierwszym etapem prac. Kolejnym będzie modelowanie układu wielofazowego z uwzględnieniem nieustalonych warunków wymiany masy panujących na powierzchni międzyfazowej.

LITERATURA

- Berčič G., Pintar A., 1997. The role of gas bubbles and liquid slug lengths on mass transport in the Taylor flow through capillaries. *Chem. Eng. Sci.*, **52**, 3709-3719. DOI: 10.1016/S0009-2509(97)00217-0
- Qian D., Lawal A., 2006, Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel. *Chem. Eng. Sci.*, **61**, 7609-7625. DOI: 10.1016/j.ces.2006.08.073
- Shao N., Gavriilidis A., Angeli P., 2010. Mass transfer during Taylor flow in microchannels with and without chemical reaction *Chem. Eng. J.*, 160, 873-881. DOI: 10.1016/j.cej.2010.02.049
- Schwartz L. W., Princen H.M., Kiss A.D., 1986, On the motion of bubbles in capillary tubes. J. Fluid Mech., 172, 259–275. DOI: 10.1017/S0022112086001738
- Sobieszuk P., Pohorecki R., Cygański P., Grzelka J., 2011. Determination of the interfacial area and mass transfer coefficients in the Taylor gas-liquid flow in a microchannel. *Chem. Eng. Sci.*, **66**, nr 23, 6048-6056. DOI: 10.1016/j. ces.2011.08.029
- Sobieszuk P., 2012. Analiza wykorzystania powierzchni międzyfazowej w przepływie Taylora w mikrokanałach gaz – ciecz i ciecz – ciecz. *Inż. Ap. Chem.*, 51, nr 6, 383-384
- Vandu C.O., Liu H., Krishna R., 2005. Mass transfer from Taylor bubbles rising in single capillaries. *Chem. Eng. Sci.*, **60**, 6430-6437. DOI: 10.1016/j. ces.2005.01.037
- Yue J., Chen G., Tuan Q., Luo L., Gonthier Y., 2007. Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel. *Chem. Eng. Sci.*, **62**, 2096-2108. DOI: 10.1016/j.ces.2006.12.057
- Yue J., Luo L., Gonthier Y., Chen G., Yuan Q., 2009. An experimental study of air-water Taylor flow and mass transfer inside square microchannels. *Chem. Eng. Sci.*, 64, 3697-3708. DOI: 10.1016/j.ces.2009.05.026

Praca była finansowana ze środków Narodowego Centrum Nauki jako grant N N209 026140.