PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Forming of the surface structure and properties of tool‘s ceramic inserts with improved abrasion resistance

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this work is to explain the reasons for improved cutting properties of coated tools made of nitride and sialon ceramics by means of investigations into mechanical properties, including microhardness, adhesion and abrasive resistance of the coatings deposited and by means of investigations into the chemical composition and structure of the coatings. Design/methodology/approach: Investigations were performed in the framework of the work accomplished encompassing the following in the first phase: the development of a technology of deposition graded and multiphase coatings using the cathodic arc evaporation (CAE) methods; investigations were carried out in the second phase into the structure and properties of coatings deposited onto ceramic tool materials with the following required properties: high adhesion, microhardness, high resistance to abrasive, corrosive and diffusion wear in the working conditions of high-performance cuttings tools. Findings: The coating deposition technologies (coating systems) employed for coatings deposited in PVD processes of cathodic arc evaporation (CAE) and in a high-temperature CVD process on tool ceramics are eligible for widespread industrial applications. Practical implications: Investigations into the service life have allowed to select coatings with the best cutting properties: (Al,Ti)N, (Al,Cr)N, (Al,Cr)N+(Ti,Al)N and T(C,N)+TiN deposited onto sialon ceramics and (Ti,Zr)N, (Ti,Al)N, Al2O3+TiN (1), Al2O3+TiN (2), TiN+Al2O3+TiN, TiN+Al2O3, TiN+Al2O3+TiN+Al2O3+TiN deposited onto nitride ceramics exhibiting best cuttability, which is correlated with their high adhesion to the substrate and high hardness. The above-mentioned coatings enhance the lifespan of a cutting edge by up to 550% and for this reason, the coatings are eligible for widespread industrial applications in cutting tools. Originality/value: An original achievement of the work - as a result of the conducted cutting tests with varied technological parameters and based on the results of investigations of mechanical and structural properties - is that an application recommendation is proposed for the developed PVD and CVD coatings deposited onto ceramic tool materials for industrial applications.
Rocznik
Strony
55--96
Opis fizyczny
Bibliogr. 145 poz.
Twórcy
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1]D. Pakuła, M. Staszuk, L.A. Dobrzański, Investigations of the structure and properties of PVD coatings deposited onto sintered tool materials, Archives of Materials Science and Engineering 58/2 (2012) 219-226.
  • [2]D. Pakuła, Structure and properties of multicomponent coatings deposited onto sialon tool ceramics, Archives of Materials Science and Engineering 52/1 (2011) 54-60.
  • [3]D. Pakuła, L.A. Dobrzański, A. Križ, M. Staszuk, Investigation of PVD coatings deposited on the Si3N4 and sialon tool ceramics, Archives of Materials Science and Engineering 46/1 (2010) 53-60. [4]L.A. Dobrzański, D. Pakuła, J. Mikuła, K. Gołombek: Investigation of the structure and properties of coatings deposited on ceramic tool materials, International Journal of Surface Science and Engineering 1/1(2007) 111-124.
  • [5]L.A. Dobrzański, D. Pakuła, Structure and properties of the wear resistant coatings obtained in the PVD and CVD processes on tool ceramics, Materials Science Forum 513 (2006) 119-133.
  • [6]L.A. Dobrzański, D. Pakuła, A. Križ, M. Sokovic, J. Kopac, Tribological properties of the PVD and CVD coatings deposited onto the nitride tool ceramics, Journal of Materials Processing Technology 175 (2006) 179-185.
  • [7]L.A. Dobrzański, D. Pakuła, Comparison of the structure and properties of the PVD and CVD coatings deposited on nitride tool ceramics, Journal of Materials Processing Technology 164-165 (2005) 832-842.
  • [8]L.A. Dobrzański, D. Pakuła, E. Hajduczek, Structure and properties of the multi-component TiAlSiN coatings obtained in the PVD process in the nitride tool ceramics, Journal of Materials Processing Technology 157-158 (2004) 331-340.
  • [9]D. Pakuła, L.A. Dobrzański, K. Gołombek, M. Pancielejko, A. Križ, Structure and properties of the Si3N4 nitride ceramics with hard wear resistant coatings, Journal of Materials Processing Technology 157-158 (2004) 388-393.
  • [10]L.A. Dobrzański, L.W. Żukowska, J. Mikuła, K. Gołombek, D. Pakuła, M. Pancielejko, Structure and mechanical properties of gradient PVD coatings, Journal of Materials Processing Technology 201 (2008) 310-314.
  • [11]M. Sokovic, J. Kopac, L.A. Dobrzański, J. Mikuła, K. Gołombek, D. Pakuła, Cutting characteristics of PVD and CVD - Coated ceramic tool inserts, Tribology in Industry 28/1-2 (2006) 3-8.
  • [12]M. Staszuk, D. Pakuła, L.A. Dobrzański, The influence of chemical composition and structure of the PVD and CVD coatings on the service life of the cutting edges manufactured of ceramic-type Si3N4 and sialon, Materials Engineering 6 (2013) 738-741.
  • [13]A.D. Dobrzańska-Danikiewicz, K. Gołombek, D. Pakuła, J. Mikuła, M. Staszuk, L.W. Żukowska, Long-term development directions of PVD/CVD coatings deposited onto sintered tool materials, Archives of Materials Science and Engineering 49/2 (2011) 69-96.
  • [14]L.A. Dobrzański, S. Skrzypek, D. Pakuła, J. Mikuła, A. Križ, Influence of the PVD and CVD technologies on the residual macro-stresses and functional properties of the gradient and multilayer coatings on the tool ceramics, Journal of Achievements in Materials and Manufacturing Engineering 35/2 (2009) 162-168.
  • [15]L.A. Dobrzański, K. Gołombek, J. Mikuła, D. Pakuła, Multilayer and gradient PVD coatings on the sintered tool materials, Journal of Achievements in Materials and Manufacturing Engineering 31/2 (2008) 170-190.
  • [16]K. Gołombek, J. Mikuła, D. Pakuła, L.W. Żukowska, L.A. Dobrzański, Sintered tool materials with multicomponent PVD gradient coatings, Journal of Achievements in Materials and Manufacturing Engineering 31/1 (2008) 15-22.
  • [17]W. Kwaśny, W. Sitek, D. Pakuła, L.A. Dobrzański, Application of neural networks for analysis of relationship between the service properties of CVD coatings and their multifractal parameters, Inżynieria Materiałowa 3-4 (2007) 660-665.
  • [18]L.A. Dobrzański, K. Lukaszkowicz, D. Pakuła, J. Mikuła, Corrosion resistance of multilayer and gradient coatings deposited by PVD and CVD techniques, Archives of Materials Science and Engineering 28/1 (2007) 12-18.
  • [19]W. Kwaśny, D. Pakuła, M. Woźniak, L.A. Dobrzański, Fractal and multifractal characteristics of CVD coatings deposited onto the nitride tool ceramics, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 371-374.
  • [20]L.A. Dobrzański, K. Lukaszkowicz, J. Mikuła, D. Pakuła, Structure and corrosion resistance of gradient and multilayer coatings, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 75-78.
  • [21]L.A. Dobrzański, K. Gołombek, J. Mikuła, D. Pakuła, Improvement of tool materials by deposition of gradient and multilayers coatings, Journal of Achievements in Materials and Manufacturing Engineering 19/2 (2006) 86-91.
  • [22] L.A. Dobrzański, K. Gołombek, J. Mikuła, D. Pakuła, Cutting ability improvement of coated tool materials, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 41-48.
  • [23] W. Kwaśny, Predicting properties of PVD and CVD coatings based on fractal quantities describing their surface, Journal of Achievements in Materials and Manufacturing Engineering, 37/2 (2009) 125 192.
  • [24] K. Gołombek, Structure and properties of injection moulding tool materials with nanocrystalline coatings, Open Access Library, Volume 1/19 (2013) 1-136 (in Polish).
  • [25] K. Lukaszkowicz, Forming the structure and properties of hybrid coatings on reversible rotating extrusion dies, Journal of Achievements in Materials and Manufacturing Engineering 55/2 (2012) 159-224.
  • [26] A.D. Dobrzanska-Danikiewcz (Ed.), Materials surface engineering development trends, Open Access Library, Volume 6 (2011) 1-549.
  • [27] A.E. Reiter, V.H. Derflinger, B. Hanselmann, T. Bachmann, B. Sartory, Investigation of the properties of Al1-xCrxN coatings prepared by cathodic arc evaporation, Surface and Coatings Technology 200 (2005) 2114-2122.
  • [28] B.A. Movchan, K.Yu Yakovchuk, Graded thermal barrier coatings, deposited by EB-PVD, Surface and Coatings Technology 188-189 (2004) 85-92.
  • [29] L.A. Dobrzański, M. Staszuk, K. Gołombek, A. Śliwa, M. Pancielejko, Structure and properties PVD and CVD coatings deposited onto edges of sintered cutting tools, Archives of Metallurgy and Materials 55/1 (2010) 187-193.
  • [30] L.A. Dobrzański, M. Staszuk, PVD and CVD gradient coatings on sintered carbides and sialon tool ceramics, Journal of Achievements in Materials and Manufacturing Engineering 43/2 (2010) 552-576. [31] M. Betiuk, T. Borowski, K. Burdyński, The (Ti,Al)N, (Ti,Al)C and (Ti,Al)CN multicompound coatings synthesis in low pressure of DC arc discharge, Engineering Materials 6 (2008) 674-678 (in Polish).
  • [32] M. Cłapa D. Batory, Improving adhesion and wear resistance of carbon coatings using Ti:C gradient layers, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 415-418.
  • [33] M. Wysiecki, Contemporary Tool Materials, WNT, Warsaw, 1997, (in Polish).
  • [34] S. PalDey, S.C. Deevi, Properties of single layer and gradient (Ti,Al)N coatings, Materials Science and Engineering A361 (2003) 1-8.
  • [35] Shuichi Kawno, Junichi Takahashi, Shiro Shimada, The preparation and spark plasma sintering of silicon nitride-based materials coated with nano-sized TiN, Journal of the European Ceramic Society 24 (2004) 309-312.
  • [36] T. Liu, C. Dong, S. Wu, K. Tang, J. Wang, J. Jia, TiN gradient and Ti/TiN multi-layer protective coatings on Uranium, Surface and Coating Technology 201 (2007) 6737-6741.
  • [37] T. Wierzchoń, Structure and properties of multicomponent and composite layers produced by combined surface engineering methods, Surface and Coatings Technology 180-181 (2004) 458-464.
  • [38] Y.-Y. Chang, D.-Y. Wang, C.-Y. Hung, Structural and mechanical properties of nanolayered TiAlN/CrN coatings synthesized by a cathodic arc deposition process, Surface and Coatings Technology 200 (2005) 1702-1708.
  • [39] L. Cunha, L. Rebouta , F. Vaz , M. Staszuk , S. Malara, J. Barbosa, P. Carvalho, (...), J.P. Riviere, Effect of thermal treatments on the structure of MoNxOy thin films, Vacuum 82/12 (2008) 1428-1432. [40] M. Pancielejko, W. Precht, A. Czyżniewski: Tribological properties of PVD titanium carbides. Vacuum 53 (1999) 57-60.
  • [41] W. Precht, M. Pancielejko, A. Czyżniewski, Structure and tribological properties of carbon and carbon nitride films, obtained by the ARC method. Vacuum, 53 (1999) 109-112.
  • [42] M. Pancielejko, A. Czyżniewski, V. Zavaleyev, A. Pander, K. Wojtalik: Optimization of the deposition parameters of DLC coatings with the MCVA method, Archives of Materials Science and Engineering 54/2 (2012) 60-67.
  • [43] P.M. Martin, Handbook of deposition technologies for films and coatings. Science, Applications and Technology, 3rd Edition Burlington, Oxford: William Andrew/Elsevier, 2010.
  • [44] K. Holmberg, A. Matthews, Coating Tribology. Properties, Mechanisms, Techniques and Applications in Surface Engineering, Tribology and interface engineering series 56, Elsevier, 2009.
  • [45] S. Zhang, Handbook of nanostructured thin films and coatings, Taylor & Francis Group, 2010.
  • [46] N. Verma, S. Cadambi, V. Jayaram, S.K. Biswas, Micromechanisms of damage nucleation during contact deformation of columnar multilayer nitride coatings, Acta Materialia 60 (2012) 3063-3073.
  • [47] Y. Chan, H. Chen, P. Chao, J. Duh, J. Lee, Microstructure control in TiAlN/SiNx multilayers with appropriate thickness ratios for improvement of hardness and anti-corrosion characteristics, Vacuum 87 (2013) 195-199.
  • [48] R. Ananthakumar, B. Subramanian, A. Kobayashi, M. Jayachandran, Elektrochemical corrosion and materials properties of reactively sputtered TiN/TiAlN miltilayer coatings, Ceramics International 38 (2012) 477-485.
  • [49] Y. Birol, B. Yuksel, Performance of gas nitrided and AlTiN coated AISI H13 hot work tool steel in aluminium extrusion, Surface & Coatings Technology 207 (2012) 461-466.
  • [50] S. Zhang, F. Cai, M. Li, The nanostructured phase transition and thermal stability of superhard f TiN/h-AlSiN films, Surface & Coatings Technology 206 (2012) 3572-3579.
  • [51] J.J. Moore, I.-W. Park, J. Lin, B. Mishra, K. Ho Kim, Nanostructured, Multifunctional Tribological Coatings, in: Nanocomposite Thin Films and Coatings S. Zhang, N. Ali (Eds.), Imperial College Press, London, 2007.
  • [52] G.G. Fuentes, E. Almandoz, R. Pierrugues, R. Martínez, R.J. Rodríguez, J. Caro, M. Vilaseca, High temperature tribological characterisation of TiAlSiN coatings produced by cathodic arc evaporation, Surface and Coatings Technology 205 (2010) 1368-1373.
  • [53] H.C. Barshilla, M. Ghosh, S. Acharya, R. Ramakrishma, K.S. Rajam, Deposition and charakterization of TiAlSiN nanocomposite coatings prepared by reactive pulsed direct current unbalanced magnetron sputtering, Applied Surface Science 256 (2010) 6420-6426.
  • [54]S. Hampshire, Silicon nitride ceramics - review of structure, processing and properties. Journal of Achievements in Materials and Manufacturing Engineering 24/1 (2007) 43-50.
  • [55]L. Przybylski, Contemporary ceramic tool materials. Monograph 276 Cracow University of Technology, Cracow 2000.
  • [56]M. Sopicka-Lizer, Sialon ceramics - properties and prospects for development, Materials Engineering 3-4 (1999) 167-176.
  • [57]M. Sopicka-Lizer, Ceramics sialon from powder obtained by carbothermical method – the physicochemical basis of production and properties. Scientific Papers No 1455, Silesian University of Technology Publisher, Gliwice, 2000.
  • [58]M. Sopicka-Lizer, M. Tańcula, T. Włodek, K. Rodak, M. Hüller, V. Kochnev, E. Fokina, K. MacKenzie, The effect of mechanical activation on the properties of sialon precursors. Journal of the European Ceramic Society 28 (2008) 279-288.
  • [59]K. Lukaszkowicz, A. Križ, J. Sondor, Structure and adhesion of thin coatings deposited by PVD technology on the X6CrNiMoTi17-12-2 and X40CrMoV5-1 steel substrates, Archives of Materials Science and Engineering 51 (2011) 40-47.
  • [60]L.A. Dobrzański, M. Adamiak, Structure and properties of the TiN and Ti(C,N) coatings deposited in the PVD process on high-speed steels, Journal of Materials Processing Technology 133 (2003) 50-62. [61]L.A. Dobrzański, E. Jonda, A. Križ, K. Lukaszkowicz, Mechanical and tribological properties of the surface layer of the hot work tool steel obtained by laser alloying, Archives of Materials Science and Engineering 28 (2007) 389-396.
  • [62]L.A. Dobrzański, B. Dołżańska, G. Matula, Structure and properties of tool gradient materials reinforced with the WC carbides, Journal of Achievements in Materials and Manufacturing Engineering 28/1 (2008) 35-38.
  • [63]L.A. Dobrzański, K. Gołombek, E. Hajduczek, Structure of the nanocrystalline coatings obtained on the CAE process on the sintered tool materials, Journal of Materials Processing Technology 175 (2006) 157-162.
  • [64]L.A. Dobrzański, K. Gołombek, J. Kopac, M. Sokovic, Effect of depositing the hard surface coatings on properties of the selected cemented carbides and tool cermets, Journal of Materials Processing Technology 157-158 (2004) 304-311.
  • [65]L.A. Dobrzański, K. Gołombek, J. Mikuła, D. Pakuła, Multilayer and gradient PVD coatings on the sintered tool materials, Journal of Achievements in Materials and Manufacturing Engineering 31(2) (2008) 170-190.
  • [66]L.A. Dobrzański, K. Gołombek, Gradient coatings deposited by Cathodic Arc Evaporation: characteristic of structure and properties, Journal of Achievements in Materials and Manufacturing Engineering 14(1-2) (2006) 48-53.
  • [67]L.A. Dobrzański, K. Gołombek, Structure and properties of the cutting tools made from cemented carbides and cermets with the TiN + mono-, gradient- or multi (Ti,Al,Si)N+TiN nanocrystalline coatings, Journal of Materials Processing Technology 164-165 (2005) 805-815.
  • [68]T. Tański, K. Labisz, L.A. Dobrzański, M. Wiśniowski, W. Matysiak, TEM microstructure investigations of aluminium alloys used as coating substrate, Archives of Materials Science and Engineering 59/2 (2013) 82-92.
  • [69]L.A. Dobrzański, E. Jonda, K. Labisz, Comparison of the abrasion wear resistance of the laser alloyed hot work tool steels, Archives of Materials Science and Engineering 55/2 (2012) 85-92.
  • [70]B. Krupińska, Z. Rdzawski, K. Labisz, Light and electron microscope investigations of cast Zn-Al alloys, Archives of Materials Science and Engineering 55/1 (2012) 29-36.
  • [71]L.A. Dobrzański, J. Mikuła, Structure and properties of PVD and CVD coated Al2O3+TiC mixed oxide tool ceramics for dry on high speed cutting processes, Journal of Materials Processing Technology 164-165 (2005) 822-831.
  • [72]L.A. Dobrzański, J. Mikuła, The structure and functional properties of PVD and CVD coated Al2O3+ZrO2 oxide tool ceramics, Journal of Materials Processing Technology 167 (2005) 438-446. [73]L.A. Dobrzański, M. Staszuk, J. Konieczny, W. Kwaśny, M. Pawlyta, Structure of TiBN coatings deposited onto cemented carbides and sialon tool ceramics, Archives of Materials Science and Engineering 38/1 (2009) 48-54.
  • [74]L.A. Dobrzański, M. Staszuk, J. Konieczny, J. Lelątko, Structure of gradient coatings deposited by CAE-PVD techniques, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 55-58.
  • [75]L.A. Dobrzański, M. Staszuk, M. Pawlyta, W. Kwaśny, M. Pancielejko, Characteristics of Ti(C,N) and (Ti,Zr)N gradient PVD coatings deposited onto sintered tool materials, Journal of Achievements in Materials and Manufacturing Engineering 31/2 (2008) 629-634.
  • [76]L.A. Dobrzański, L.W. Żukowska, J. Mikuła, K. Gołombek, T. Gawarecki, Hard gradient (Ti,Al,Si)N coating deposited on composite tool materials, Archives of Materials Science and Engineering 36/2 (2009) 69-75.
  • [77]L.A. Dobrzański, Designing of the structure and properties materials and biomedical engineering materials . Foresight of surface properties formation leading technologies of engineering materials and biomaterials International OCSCO World Press, Gliwice, 2009.
  • [78]G. Bao, L. Wang, Multiple cracking in functionally graded ceramic/metal coatings. Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, USA 1994.
  • [79]B. Bergman, T. Ekstrm, A. Micski, The Si-Al-O-N system at temperatures of 1700-1775ºC. Journal of the European Ceramic Society 8 (1991) 141-151.
  • [80]M. Betiuk, T. Borowski, K. Burdyński, Synthesis of multi-component coatings (Ti,Al) N, (Ti,Al) C, (Ti,Al) in low pressure direct-current plasma arc discharge Materials Engineering 6 (2008) 674-678. [81]M. Betiuk, M. Szudrowicz, Etching and ion assisted process PVD PA - Arc - AIDA ion source, Materials Engineering 5 (2005) 277-280.
  • [82]M.B. Bever, P.E. Duwez, Gradients in composite materials. Materials Science and Engineering 10 (1972) 1-8.
  • [83] O.V. Biest, J. Vleugels, Perspectives on the development of ceramic composites for cutting tool applications, Key Engineering Materials 206-213 (2002) 955-960.
  • [84] J. Bujak, J. Walkowicz, J. Kusinski, Influence of nitrogen pressure on the structure and properties of (Ti,Al)N coatings deposited by cathodic vacuum arc PVD process, Surface and Coating Technology 180 181 (2004) 150-157.
  • [85] T. Burakowski, K. Miernik, J. Walkowicz, Application of physical and chemical plasma-assisted technology to manufacturing wear resistant thin coatings, Heat Treatment, Surface Engineering 130-132 (1995).
  • [86] T. Burakowski, E. Roliński, T. Wierzchoń, Surface engineering of metals. Publisher University of Warsaw, Warsaw, 1992.
  • [87] T. Burakowski, T. Wierzchoń, Surface engineering of metals. Publisher University of Warsaw, Warsaw, 1992- 1995.
  • [88] T. Burakowski, Areology. The origin and development. Publisher Institute for Sustainable Technologies NRI, Radom 2007.
  • [89] T. Burakowski, Opportunities of areology. Materials Engineering 5 (2006) 890-897.
  • [90] S.I. Cha, S.H. Hong, B.K. Kim, Spark plasma sintering behavior of nanocrystalline WC-10Co cemented carbides powders, Materials Science & Engineering A351 (2003) 31-38.
  • [91] P. Holubar, M. Jilek, M. Sima, Present and possible future applications of superhard nanocomposite coatings, Surface and Coatings Technology 133-134 (2000) 145-151.
  • [92] B. Navinšek, P. Panjan, F. Gorenjak, Improvement of hot forging manufacturing with PVD and DUPLEX coatings, Surface and Coatings Technology 137 (2001) 255-264.
  • [93] M. Sokovic, L. Kosec, L.A. Dobrzański, An investigation of the diffusion across a PVD-coated cermet tool/workplece interface, Strojniski Vestnik - Journal of Mechanical Engineering 48 (2002) 33-40.
  • [94] M. Soković, K. Mijanović, Ecological aspects of the cutting fluids and its influence on quantifiable parameters of the cutting processes Journal of Materials Processing Technology 109 (2001) 181-189. [95] S.R. Bradbury, T. Huyanan, Challenges facing surface engineering technologies in the cutting tool industry, Vacuum 56 (2000) 173-177.
  • [96] K.G. Budinski, Tool wear in cutting plastic - abrasion or erosion?, Wear 233-235 (1999) 362.
  • [97] J. Kopać, M. Soković, S. Dolinšek, Tribology of coated tools in conventional and HSC machining, Journal of Materials Processing Technology 118 (2001) 377-384.
  • [98] J. Kopać, M. Soković, Technika Odrezavanija. Sodobna Rezalna Orodja, University of Ljubljana, Ljubljana, 1993.
  • [99] S. Ekinović, Obrada rezanjem, BiH, Zenica, 2001.
  • [100]J.P. Celis, A systems approach to the tribological testing of coated materials, Surface and Coatings Technology 74-75 (1995) 15-22.
  • [101]J. Dmochowski, Fundamentals of machining, PWN, Warsaw,1983.
  • [102]W. Grzesik, Fundamentals metal materials machining, WNT, Warsaw,1998.
  • [103]L. Przybylski, Contemporary ceramic cutting materials, Cracow University of Technology, Cracow 2000.
  • [104]P. Holubar, M. Jilek, M. Sima, Nanocomposite nc-TiAlSiN and nc-TiN-BN coatings: their applications on substrates made of cemented carbide and results of cutting tests, Surface and Coatings Technology 120-121 (1999) 184-188.
  • [105]Ł. Kołodziejczyk, S. Fouvry, B. Wendler, P. Kapsa, Mechanical and tribological characteristics of modulated coatings on 6-5-2 HSS steel, Materials Engineering 6 (2000) 257-260.
  • [106]S. Hogmark, P. Hedenqvist, S. Jacobson, Tribological properties of thin hard coatings: demands and evaluation, Surface and Coatings Technology 90 (1997) 247-257.
  • [107]S. Hogmark, S. Jacobson, M. Larsson, Design and evaluation of tribological coatings, Wear 246 (2000) 20-33.
  • [108]K.D. Bouzakis, N. Michailidis, S. Hadjiyiannis, K. Efstathiou, E. Pavlidou, G. Erkens, S. Rambadt, I. Wirth, Improvement of PVD coated inserts cutting performance, through appropriate mechanical treatments of substrate and coating surface, Surface and Coatings Technology 146-147 (2001) 443-450. [109]K.D. Bouzakis, N. Michailidis, G. Skordaris, S. Kombogiannis, S. Hadjiyiannis, K. Efstathiou, E. Pavlidou, G. Erkens, S. Rambadt, I. Wirth, Optimisation of the cutting edge roundness and its manufacturing procedures of cemented carbide inserts, to improve their milling performance after a PVD coating deposition, Surface and Coatings Technology 163-164 (2003) 625-630.
  • [110]J. Kopać, M. Soković, S. Dolinšek, Tribology of coated tools in conventional and HSC machining, Journal of Materials Processing Technology 118 (2001) 377-384.
  • [111]S.C. Lim, C.Y.H. Lim, K.S. Lee, The effects of machining conditions on the flank wear of tin coated high speed steel tool inserts, Wear 181-183 (1995) 901-912.
  • [112]K. Gołombek, Structure and properties of cemented carbides and tool cermets coated in PVD process by wear resistant coatings. Unpublished PhD thesis, Gliwice 2001.
  • [113]M. Koizumi, Recent progress of functionally gradient materials in Japan, Ceramic Engineering and Science Proceedings, The American Ceramic Society (1992) 333-347.
  • [114]W. Juda, A. Sawka, A. Kwatera, Synthesis of Al2O3 layers from of aluminum acetylacetonate on cemented carbides in the presence of argon and air, Materials Engineering 5 (2005) 248-251.
  • [115]T. Tański, K. Lukaszkowicz, M. Staszuk, M. Krupiński, K. Gołombek, Structure and properties of gradient/monolithic coatings deposited by PVD and CVD methods onto the magnesium alloys, Wulfenia 20/10 (2013) 2-16.
  • [116]S.J. Skrzypek, New possibilities of materials own macrostress measurement using X-ray diffraction geometry fixed angle of incidence, AGH Publishing, Cracow, 2002.
  • [117]J.A. Thornton, Journal of Vacuum Science and Technology A 4/6 (1986) 3059-3065.
  • [118]Wang Da-Yung, Chang Chi-Lung, Hsu Cheng-Hsun, Lin Hua-Ni, Synthesis of (Ti,Zr)N hard coatings by unbalanced magnetron sputtering. Surface and Coatings Technology 130 (2000) 64-68.
  • [119]N.H. Elmagrabi, F.M. Shuaeib, C.H.C. Haron, An overview on the cutting tool factors in machinability assessment, Journal of Achievements in Materials and Manufacturing Engineering 23/2 (2007) 87-90.
  • [120]M. Adamiak, Structure and properties of TiN and TiC,N coatings obtained in the PVD process on high speed steels. Unpublished PhD thesis, Silesian Univerity of Technology, Gliwice, 1997.
  • [121]J. Honczarenko, The influence of new materials and manufacturing technologies on the build a modern machine tools. Materials Engineering 3 (2006) 601-604.
  • [122]K. Oczoś, Development of innovative technologies materials formation. Mechanic 8-9 (2002) 534 548.
  • [123]P. Cichosz, Cutting tools, WNT, Warsaw, 2006.
  • [124]W. Grzesik, Fundamentals of metal materials cutting, WNT, Warsaw, 1998.
  • [125]M. Wysiecki, Modern tool materials, WNT, Warsaw, 1997.
  • [126]L.A. Dobrzański, Engineering materials and materials designing. Fundamentals of materials science and metallurgy, WNT, Gliwice-Warsaw, 2006.
  • [127]S.I. Cha, S.H. Hong, B.K. Kim, Spark plasma sintering behavior of nanocrystalline WC-10Co cemented carbides powders, Materials Science & Engineering A351 (2003) 31-38.
  • [128]J.R. Groza, A. Zavaliangos, Sintering activation by external electrical field. Materials Science & Engineering A287 (2000) 171-177.
  • [129]M. Michalski, D. Siemaszko, Pulse plasma sintering of nanocrystalline WC-12Co cements. Materials Engineering 3 (2006) 629-631.
  • [130]S.H. Risbud, C-H. Shan, Fast consolidation of ceramic powders. Materials Science & Engineering A204 (1995) 146-151.
  • [131]K. Czechowski, I. Pofelska-Filip, A. Fedaczyński, PVD coatings on plates from ceramic materials, Surface Engineering 2 (2005) 19-24.
  • [132]K. Czechowski, I. Pofelska-Filip, P. Szlosek, A. Fedaczyński, J. Kasina, B. Królicka, Choosen properties and the impact on the edge stability of layers deposited by PVD methods on the cutting plates from ceramic materials, Materials Engineering 5 (2005) 261-264.
  • [133]K. Czechowski, I. Pofelska-Filip, P. Szlosek, B. Królicka, J. Wszołek, Designing of the using properties of the cutting edges made from oxide-carbon ceramic by the use of nanostructural coating deposited by PVD method, Materials Engineering 5 (2006) 913-916.
  • [134]J. Musil, Hard and superhard nanocomposite coatings, Surface and Coatings Technology 125 (2000) 322-330.
  • [135]S. Veprek, A.S. Argon, Towards the understanding of mechanical properties of super- and ultrahard nanocomposites, Journal of Vacuum Science and Technology B20 (2002) 650-664.
  • [136]S. Veprek S, Reiprich, A concept for the design of novel superhard coatings, Thin Solid Films 268 (1995) 64-71.
  • [137]S. Veprek, Conventional and new approaches towards the design of novel superhard materials, Surface and Coatings Technology 97 (1997) 15-22.
  • [138]S. Veprek, New development in superhard coatings, The superhard nanocrystalline-amorphous composites, Thin Solid Films 317 (1998) 449-454.
  • [139]W. Juda, A. Kwatera, A. Sawka, Improvement of CVD method of deposition of clean Al2O3 protective layers on a substrate from cemented carbide, Engineering Material 5 (2006) 1031-1034. [140]W. Gissler, P.N. Gibson, Titanium implantation into born nitride films and ion-beam mixing of titanium born nitride multilayers, Ceramics International 22 (1996) 335-340.
  • [141]Y.H. Lu, Z.F. Zhou, P. Sit, Y.G. Shen, K.Y. Li, Chen Haydn, X-Ray photoelectron spectroscopy characterization of reactively sputtered Ti-B-N thin films, Surface and Coatings Technology 187 (2004) 98-105.
  • [142]T.P. Mollart, J. Haupt, R. Gilmore, W. Gissler, Tribological behaviour of homogeneous Ti-B-N, Ti B-N-C and TiN/h-BN/TiB2 multilayer coatings, Surface and Coatings Technology 86-87 (1996) 231-236.
  • [143]Z. Werner, J. Stanisławski, J. Piekoszewski, E.A. Levashov, W. Szymczyk, New types of multi component hard coatings deposited by ARC PVD on steel pre-treated by pulsed plasma beams, Vacuum 70 (2003) 263-267.
  • [144]L.A. Donohue, J. Cawley, J.S. Brooks, Deposition and characterization of arc-bond sputter TixZryN coatings from pure metallic and segmented targets, Surface and Coatings Technology 72 (1995) 128-138.
  • [145]V.V. Uglov, V.M. Anishchik, S.V. Zlotski, G. Abadias, The phase composition and stress development in ternary Ti-Zr-N coatings grown by vacuum arc with combining of plasma flows. Surface and Coatings Technology 200 (2006) 6389-6394.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45fd43a1-7996-416b-8e18-79adfad0b3f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.