PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Natural Ageing on the Safety Parameters and Performance of TNT-based Melt Cast RDX/TNT Compositions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
2,4,6-Trinitrotoluene (TNT) based melt cast RDX/TNT compositions stockpiled for a period of time were exposed under natural environmental conditions, with humidity and temperature for storage in the range of 40-95% RH and 4-47 °C, respectively. The composition, chemical, thermal and mechanical properties of the RDX/TNT compositions before and after ageing were studied by high performance liquid chromatography, Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry and a universal test machine, respectively. In addition, the safety, mechanical sensitivities, detonation velocity and blast parameters were also investigated through vacuum stability tests (VST), a BAM fall hammer apparatus, a BAM friction tester and a piezoelectric accelerator, respectively. The results showed that after ageing, the colour of the composition had become dark but there was no variation in the RDX and TNT content by high performance liquid chromatography (HPLC). The VST results showed that the volume of evolved gas was almost the same and less than 2 mL/g, indicating chemical stability. The results obtained from different analytical techniques demonstrated that there was no significant variation in the chemical, thermal and mechanical properties for the aged samples as compared to the fresh composition. The change in mechanical sensitivity is related to the components and the ageing mode. The detonation velocity and detonation pressure were found to be similar to those of the freshly prepared composition and consistent with the data obtained from overall natural ageing. The results of blast studies revealed that there was either a similar or slight variation in the blast peak over pressure and impulse for RDX/TNT compositions at different locations before and after ageing under natural environmental conditions.
Rocznik
Strony
138--158
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
  • Terminal Ballistics Research Laboratory, DRDO, Sector 30, 160030 Chandigarh, India
  • Department of Applied Sciences, Punjab Engineering College, (Deemed to be University), Sector 12, 160012 Chandigarh, India
autor
  • Terminal Ballistics Research Laboratory, DRDO, Sector 30, 160030 Chandigarh, India
  • Terminal Ballistics Research Laboratory, DRDO, Sector 30, 160030 Chandigarh, India
  • Department of Applied Sciences, Punjab Engineering College, (Deemed to be University), Sector 12, 160012 Chandigarh, India
  • Terminal Ballistics Research Laboratory, DRDO, Sector 30, 160030 Chandigarh, India
  • Department of Nanoscience and Technology, Amity University, Gurugram, Haryana, India
Bibliografia
  • [1] Fouche, F.; Van, S. TNT-based Insensitive Munitions. Proc. 27th Int. Annu. Conf. ICT, Karlsruhe, Germany, 1996.
  • [2] Huang, H.J.; Dong, H.S.; Zhang, M. Problems and Developments in Composition B Modification Research. Chin. J. Energ. Mater. 2001, 9: 183-186.
  • [3] Castorina, T.C.; McCahill, J.W.; Forsyth, A.C. Compatibility of Flocculating Agents with RDX/TNT/Comp. B. J. Hazard. Mater. 1977-1978, 2(2): 137-142; DOI: 10.1016/0304-3894(77)80014-9.
  • [4] Stepanov, V.; Anglade, V.; Balas Hummers, W.A.; Bezmelnitsyn, A.V.; Krasnoperov, L.N. Production and Sensitivity Evaluation of Nanocrystalline RDX-based Explosive Compositions. Propellants Explos. Pyrotech. 2011, 36(3): 240-246; DOI: 10.1002/prep.201000114.
  • [5] Trzciński, W.; Cudziło, S.; Dyjak, S.; Nita, M. A Comparison of the Sensitivity and Performance Characteristics of Melt-Pour Explosives with TNT and DNAN Binder. Cent. Eur. J. Energ. Mater. 2014, 11: 443-455.
  • [6] An, C.; Wang, J.; Xu, W.; Li, F. Preparation and Properties of HMX Coated with a Composite of TNT/Energetic Material. Propellants Explos. Pyrotech. 2010, 35(4): 365-372; DOI: 10.1002/prep.200900060.
  • [7] Vijayalakshmi, R.; Radhakrishnan, S.; Shitole, P.; Pawar, S.J.; Mishra, V.S.; Garg, R.K.; Talawar, M.B.; Sikder, A.K. Spherical 3-Nitro-1,2,4-triazol-5-one (NTO) based Melt-cast Compositions: -Heralding a New Era of Shock Insensitive Energetic Materials. RSC Adv. 2015, 5: 101647-101655; DOI: 10.1039/C5RA19010J.
  • [8] Singh, A.; Sharma, T.C.; Kumar, M.; Narang, J.K.; Kishore, P.; Srivastava, A. Thermal Decomposition and Kinetics of Plastic Bonded Explosives Based on Mixture of HMX and TATB with Polymer Matrices. Def. Technol. 2017, 13: 22-32; DOI: 10.1016/j.dt.2016.11.005.
  • [9] An, C.-W.; Li, F.-S.; Song, X.-L.; Wang, Y.; Guo, X.-D. Surface Coating of RDX with a Composite of TNT and an Energetic-polymer and Its Safety Investigation. Propellants Explos. Pyrotech. 2009, 34(5): 400-405; DOI: 10.1002/prep.200700286.
  • [10] Urbanski, T. Chemistry and Technology of Explosives. Vol. 1, Pergamon Press, Oxford, 1964, pp. 290-300; ISBN 978-0080102382.
  • [11] Wiegand, D.A.; Pinto, J. The Mechanical Response of TNT and a Composite, Composition B, of TNT and RDX to Compressive Stress: III Dependence on Processing and Composition. J.Energ. Mater.1991, 9(5): 349-413; DOI: 10.1080/07370659108019381.
  • [12] Qiu, H.; Stepanov, V.; Di, S.A.; Chou, T.; Lee, W.Y. RDX-based Nanocomposite Microparticles for Significantly Reduced Shock Sensitivity. J. Hazard. Mater. 2011, 185(1): 489-493; DOI: 10.1016/j.jhazmat.2010.09.058.
  • [13] Pinto, J.; Wiegand, D.A. The Mechanical Response of TNT and a Composite, Composition B, of TNT and RDX to Compressive Stress: II Triaxial Stress and Yield. J. Energ. Mater. 1991, 9(3): 205-263; DOI: 10.1080/07370659108019865.
  • [14] Nassim, B.; Zhang, Q. Thermal Stability of Explosive Mixture with Additives at Different Ambient Temperatures. Propellants Explos. Pyrotech. 2018, 43(2): 177-187; DOI: 10.1002/prep.201700204.
  • [15] Zhang, J.G.; Wang, K.; Niu, X.Q.; Zhang, T.L.; Zhou, Z.N. Theoretical Study of the Decomposition Mechanisms and Kinetics of the Ingredients RDX in Composition B. J. Mol. Model. 2012, 18(8): 3915-3926; DOI: 10.1007/s00894-012-1396-1.
  • [16] Long, G.T.; Brems, B.A.; Wight, C.A. Autocatalytic Thermal Decomposition Kinetics of TNT. Thermochim. Acta 2002, 388(1-2): 175-181; DOI: 10.1016/S0040-6031(02)00031-X.
  • [17] Adnan, H. Investigation of the Service Life of Binders Used in Rocket Propellants and High Explosives. MSc. dissertation, Military Technical College, Cairo, 1999.
  • [18] Luo, L.; Guo, P.; Jin, B.; Xiao, Y.; Zhang, Q.; Chu, S.; Peng, R. An Isothermal Decomposition Dynamics Research Instrument and Its Application in HMX/TNT/Al Composite Explosive. J. Therm. Anal. Calorim. 2020, 139: 2265-2272; DOI: 10.1007/s10973-019-08554-5.
  • [19] Kumar, R.; Singh, A.; Kumar, M.; Soni, P.K.; Singh, V. Investigations of Effect of Hydroxyl‐terminated Polybutadiene‐based Polyurethane Binders Containing Various Curatives on Thermal Decomposition Behaviour and Kinetics of Energetic Composites. J. Therm. Anal. Calorim. 2021, 145: 2417-2430; DOI: 10.1007/s10973-020-09773-x.
  • [20] Singh, A.; Sharma, T.C.; Kishore, P. Thermal Degradation Kinetics and Reaction Models of 1,3,5-Triamino-2,4,6-trinitrobenzene-based Plastic-Bonded Explosives Containing Fluoropolymer Matrices. J. Therm. Anal. Calorim. 2017, 129: 1403-1414; DOI: 10.1007/s10973-017-6335-z.
  • [21] Singh, A.; Singh, S.; Sharma, T.C.; Kishore, P. Physicochemical Properties and Kinetic Analysis for Some Fluoropolymers by Differential Scanning Calorimetry. Polym. Bull. 2018, 75: 2315-2338; DOI: 10.1007/s00289-017-2153-5.
  • [22] Singh, A.; Soni, P.K.; Sarkar, C.; Mukherjee, N. Thermal Reactivity of Aluminized Polymer-bonded Explosives Based on non-Isothermal Thermogravimetry and Calorimetry Measurements. J. Therm. Anal. Calorim. 2018, 136: 1021-1035; DOI: 10.1007/s10973-018-7730-9.
  • [23] Singh, A.; Kumar, R.; Soni, P.K.; Singh, V. Compatibility and Thermokinetics Studies of Octahydro- 1,3,5,7-tetranitro-1,3,5,7-tetrazocine with Polyether-based Polyurethane Containing Different Curatives. J. Energ. Mater. 2019, 37(2): 141-153; DOI: 10.1080/07370652.2018.1552337.
  • [24] Singh, A.; Kumar, R.; Soni, P.K.; Singh, V. Compatibility and Thermal Decomposition Kinetics Between HMX and Some Polyester-based Polyurethanes. J. Therm. Anal. Calorim. 2021, 143: 3969-3981; DOI: 10.1007/s10973-020-09377-5.
  • [25] Malik, S.; Singh, A.; Kumar, R.; Soni, P.K.; Kaur, A. Compatibility and Thermokinetics Studies of 4-Amino Triazolium Picrate with Various Polymers. J. Therm. Anal. Calorim. 2023, 148: 6371-6387; DOI: 10.1007/s10973-023-12161-w.
  • [26] Singh, A.; Kumar, R.; Soni, P.K.; Singh, V. Investigation of the Effect of Diisocyanate on the Thermal Degradation Behavior and Degradation Kinetics of Polyether-based Polyurethanes. J. Macromol. Sci., Part B: Phys. 2020, 59(12): 775-795; DOI: 10.1080/00222348.2020.1802850.
  • [27] Singh, A.; Soni, P.K.; Singh, M.; Srivastava, A. Thermal Degradation, Kinetic and Correlation Models of poly(Vinylidene Fluoride-chlorotrifluoroethylene) Copolymers. Thermochim. Acta 2012, 548: 88-92; DOI: 10.1016/j.tca.2012.08.031.
  • [28] Wei, R.; Huang, S.; Wang, Z.; Wang, X.; Ding, C.; Yuen, R.; Wang, J. Thermal Behavior of Nitrocellulose with Different Aging Periods. J. Therm. Anal. Calorim. 2019, 136: 651-660; DOI: 10.1007/s10973-018-7653-5.
  • [29] Sorensen, D.N.; Quebral, A.P.; Baroody, E.E.; Sanborn, W.B. Investigation of the Thermal Degradation of the Aged Pyrotechnic Titanium Hydride/Potassium Perchlorate. J. Therm. Anal. Calorim. 2006, 85: 151-156; DOI: 10.1007/s10973-005-7365-5.
  • [30] Kim, Y.; Ambekar, A.; Yoh, J.J. Toward Understanding the Aging Effect of Energetic Materials via Advanced Isoconversional Decomposition Kinetics. J. Therm. Anal. Calorim. 2018, 133: 737-744; DOI: 10.1007/s10973-017-6778-2.
  • [31] Itkis, D.G.; Bohn, M.A. Simulation of Heat Flow Curves of NC-based Propellants – Part 1: Determination of Reaction Enthalpies and Other Characteristics of the Reactions of NC and Stabilizer DPA Using Quantum Mechanical Methods. Propellants Explos. Pyrotech. 2021, 46(8): 1188-1203; DOI: 10.1002/prep.202000314.
  • [32] Wei, R.; Huang, S.; Wang, Z.; Wang, C.; Zhou, T.; He, J.; Yuen, R.; Wang, J. Effect of Plasticizer Dibutyl Phthalate on the Thermal Decomposition of Nitrocellulose. J. Therm. Anal. Calorim. 2018, 134: 953-969; DOI: 10.1007/s10973-018-7521-3.
  • [33] Volk, F.; Bohn, M.A.; Wunsch, G. Determination of Chemical and Mechanical Properties of Double Base Propellants during Ageing. Propellants Explos. Pyrotech. 1987, 12(3): 81-87; DOI: 10.1002/prep.19870120305.
  • [34] Itkis, D.G.; Bohn, M.A. Simulation of Heat Flow Curves of NC-based Propellants – Part 2: Application to DPA Stabilized Propellants. Propellants Explos. Pyrotech. 2021, 46(8): 1204-1215; DOI: 10.1002/prep.202000313.
  • [35] Singh, A.; Kaur, G.; Sarkar, C.; Mukherjee, N. Investigations on Chemical, Thermal Decomposition Behavior, Kinetics, Reaction Mechanism and Thermodynamic Properties of Aged TATB. Cent. Eur. J. Energ. Mater. 2018, 15(2): 258-282; DOI: 10.22211/cejem/84993.
  • [36] Singh, A.; Sharma, T.C.; Singh, V.; Mukherjee, N. Thermal Degradation Behaviour and Kinetics of Aged TNT-based Melt Cast Composition B. Cent. Eur. J. Energ. Mater. 2019, 16(3): 360-379; DOI: 10.22211/cejem/112234.
  • [37] Singh, A.; Sharma, T.C.; Singh, V.; Mukherjee, N. Studies on the Thermal Stability and Kinetic Parameters of Naturally Aged Octol Formulation. J. Therm. Anal. Calorim. 2021, 145: 411-421; DOI: 10.1007/s10973-020-09750-4.
  • [38] Karlos, V.; Solomos, G. Calculation of Blast Loads for Application to Structural Components. Administrative Arrangement No JRC 32253-2011 with DG-HOME Activity A5 ‒ Blast Simulation Technology Development. Publications Office of the European Union, Luxembourg, European Union, JRC87200, Report EUR 26456, 2013; DOI: 10.2788/61866.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45fc1eb6-1e61-471d-a69a-388a8249e23e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.