PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Blade cup method for cavitation reduction in marine propellers

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Energy efficiency has become more important in every industry and daily life. Designing and building a more efficient marine vehicle can lead to lower fuel consumption and a longer lifetime for the components of the vehicle. Erosion caused by cavitation reduces the service life of the propeller and the related components in the propulsion and maneuvering system. Reducing cavitation leads to a longer life for these components. This paper aims to explain and investigate propeller blade cup as a cavitation reduction method for marine propellers. A cavitating no-cup propeller is created and analyzed then the cupped version of this propeller is generated and analyzed to compare with the no-cup propeller. Cavitation results of these propellers are investigated. In addition, the thrust, torque, and efficiency of the propellers are compared.
Rocznik
Tom
Strony
54--62
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Istanbul Technical University, Maslak, 34467 Istanbul Türkiye
Bibliografia
  • 1. T. Koronowicz, Z. Krzemianowski, T. Tuszkowska, J.A. Szantyr, “A Complete Design of Ship Propellers Using New Computer System” Polish Maritime Research 1(59), vol. 16, pp. 29-34, 2009.
  • 2. T. Koronowicz, Z. Krzemianowski, “Investigation of Influence of Screw Propeller Operation on Water Flow Around Stern Part of Ship Hull” Polish Maritime Research 1(51), vol 14, pp. 3-8, 2007.
  • 3. A. Peters, U. Lantermann, O. el Moctar, “Numarical Prediction of Cavitation Erosion on a Ship Propeller in Model- and full-scale” Wear, vol. 408-409, pp. 1-12, 15 August 2018.
  • 4. B. Aktas, M. Atlar, S. Turkmen, W. Shi, R. Sampson, E. Korkut, P. Fitzsimmons, “Propeller Cavitation Noise Investigations of a Research Vessel Using Medium Size Cavitation Tunnel Tests and Full-Scale Trials” Ocean Engineering, vol. 120, pp. 122-135, 1 July 2016.
  • 5. J.W. Lindau, D.A. Boger, R.B. Medvitz, R.F. Kunz, “Propeller Cavitation Breakdown Analysis” Journal of Fluids Engineering, vol. 127(5), pp. 995-1002, Sep 2005.
  • 6. J. G. Peck, B. L. Fisher, “Cavitation Performance of Propellers With and Without Cupping” David W. Taylor Naval Ship Research and Development Center, Sep 1976
  • 7. K. W. Shin, P. Andersen “CFD Analysis of Cloud Cavitation on Three Tip-Modified Propellers With Systematically Varied Tip Geometry” J. Phys. :Conf. Ser 656 012139, 2015.
  • 8. Donald M. MacPherson, HydroComp Technical Report, Small Propeller Cup, Presented at the Propeller/Shafting Symposium, 1997
  • 9. Jing-Fa Tsai, “Study on the Cavitation Characteristics of Cupped Foils” Journal of Marine Science and Technology, vol. 2, pp. 123-134, 1997.
  • 10. Hwang, J. L, Tsai, J: F., Li C. Y., “Cupped Propeller Test and Analysis”, vol. 42, issue 4, pp. 186-192, October 1995
  • 11. HydroComp Technical Report, Correlating Michigan Wheel Cup Gages
  • 12. E. Korkut, M. Atlar, “An Experimental Study into the Effect of Foul Release Coating on the Efficiency, Noise and Cavitation Characteristics of a Propeller” First International Symposium on Marine Propulsors smp’09, Trondheim, Norway, June 2009
  • 13. E. V. Lewis, Principles of Naval Architecture, Volume II, Resistance, Propulsion, and Vibration, Society of Naval Architects and Marine Engineers, Jersey City, NJ, 1988.
  • 14. E. C. Tupper, “Introduction to Naval Architecture” , Fifth Edition, 2013
  • 15. J. Carlton, 2007, “Marine Propellers and Propulsion”, Second Edition, Butterworth-Heinemann
  • 16. P. Krol, “Blade Section Profile Array Lifting Surface Design Method for Marine Screw Propeller Blade” Polish Maritime Research 4 (104), vol. 26, pp. 134-141, 2019.
  • 17. D.-C. Liu, W.-X. Zhou, “Numerical Predictions of the Propeller Cavitation Pressure Fluctuation behind Ship and Comparison with Experiment”, Journal of Ship Mechanics, vol. 23(3), pp. 245-254, March 2019.
  • 18. N. Lu, G. Bark, U. Svennberg, R. Bensow, “Numerical Simulations of the Cavitating Flow on a Marine Propeller”, Proceedings of the Eighth International Symposium on Cavitation, pp. 338-343, 2012.
  • 19. L.Guangnian, Q. Chen, Y. Liu “Experimental Study on Dynamic Structure of Propeller Tip Vortex” Polish Maritime Research 2 (106), vol. 27, pp. 11-18, 2020.
  • 20. S. Sezen, A. Dogrul, S. Bal, “An Empirical Approach For Propeller Tip Vortex Cavitation Noise”, Sigma J Eng & Nat Sci, vol. 36 (4), pp. 1127-1139, 2018.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45f47c8a-57f8-4f57-9cc4-312ba172e072
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.