PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Czy na Dolnym Śląsku występują naturalne analogi skał księżycowych?

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Are there natural analogues of Moon rocks in Lower Silesia?
Języki publikacji
PL
Abstrakty
EN
We describe the geological structure of the Moon and its evolution from the time of its joint formation with the Earth to the present. The common origin of both of these bodies justifies the search for analogues of the rocks that build the Earth andthe Moon. On this basis, we characterize the rocks that constitute the crust of the Moon. These comprise rocks of the primary planetary anorthosite crust: anorthosites and, subordinately, other gabbroid rocks (gabbros, troctolites, norrites). These rocks make up the lunar highlands and mainly build the far side of the Moon. On the near side, there are vast areas covered with basaltoids several hundred meters thick, of various ages: the lunarmaria. These two types of igneous rocks constitute the Moon's crust. Its surface is coveredwith materialproduced by impact metamorphism from incoming asteroids, meteoroids, micrometeoroids and interplanetary dust, as well as resulting from the crust's interaction with solar wind particles and cosmic radiation. This regolith comprises loose material a few to several meters thick. We compare the chemical composition of these lunar igneous rocks with the chemical composition of the igneous rocks of Lower Silesia. Basaltoids, anorthosites, gabbros and troctolites were included in our analysis. We conclude, unsurprisingly, that it is currently impossible to indicate the occurrence of natural analogues of lunar rocks in Lower Silesia. There are large differences between the chemical composition between the rocks constituting the primary planetary crust of the Moon and the igneous alkaline rocks of Lower Silesia, the latter representing strongly differentiated igneous rocks of the Earth's crust and upper mantle. Nevertheless, in the case of basaltoids, it will likely be possible in the near future to find rocks that can, with some approximation, be considered analogues of lunar basaltoids. At present, potential locations of lunar-like basalts and foidites include the Zaręba and Księginki quarries near Lubań. In the case of plutonie rocks, especially anorthosites, Lower Silesian analogues of lunar rocks will be very approximate. However, based on basaltoid rocks from Lower Silesia, and perhaps later also using gabbroid rocks, it should be possible to produce a natural analogue of the lunar regolith. Rock material from terrestrial analogues will have to be significantly processed both physically and chemically to obtain the composition and structure of this regolith material. These considerations, however, are not the purpose of this work. We focus primarily on analogies of chemical and mineral composition, as the basic features enabling the production of a lunar regolith analogue. We are particularly interested in pointing out analogies resulting from the composition of the parent magmas of these rocks, as reflected in the chemical composition of the rocks and their mineral composition. Due to significant differences in the age of crystallization of lunar magmas and their conditions of this crystallization compared to the rocks of Lower Silesia (on Earth), it is not presently possible to indicate Lower Silesian age-analogues of lunar rocks or structural and textural analogues.
Rocznik
Strony
26--46
Opis fizyczny
Bibliogr. 98 poz., fot., map., rys., tab., wykr.
Twórcy
  • Wydział Geoinżynierii, Górnictwa i Geologii, Politechnika Wrocławska, Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław
  • Wydział Geoinżynierii, Górnictwa i Geologii, Politechnika Wrocławska, Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław
  • Wydział Geoinżynierii, Górnictwa i Geologii, Politechnika Wrocławska, Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław
Bibliografia
  • 1. ANAND M., CRAWFORD I.A., BALAT-PICHELIN M., ABANADES S., van WESTRENEN W., PÉRAUDEAU G., JAUMANN R., SEBOLDT W. 2012 - A brief review of chemical and mineralogical resources on the Moon and likely initial in situ resource utilization (ISRU) applications. Planet.SpaceSci.,74:42-48; http://dx.doi.org/10.1016/j.pss.2012.08.012
  • 2. ASHWAHL L.D. 2013 - Anorthosites. Springer, Berlin Heidelberg.
  • 3. BARR A.C. 20 16 - On the origin of Earth's Moon. J. Geophys. Res.: Planets, 121: 1573-1601; https://doi.org/10.1002/2016JE005098
  • 4. BELL S., JOY K., MOORE K. 2022 -50 years of Luna legacy. Astronom. Geophys., 63 (1): 14-20; https://doi.org/10.1093/astrogeo/atac008
  • 5. BENNETT N.J., ELLENDER D., DEMPSTER A.G. 2020 - Commercial viabilityoflunarIn-SituResourceUtilization(ISRU).Planet.SpaceSci., 182; https://doi.org/10.1016/j.pss.2020.104842
  • 6. BIRKENMAJER K., PÉCSKAY Z., GRABOWSKI J., LORENC M., ZAGOŻDŻON P.P. 2002a - Radiometric dating of the Tertiary volcanics in Lower Silesia, Poland. II. K-Ar and palaeomagnetic data from Neogene basanites near Lądek Zdrój, Sudetes Mts. Ann. Soc. Geol. Pol., 72 (2): 119-129.
  • 7. BIRKENMAJER K., PÉCSKAY Z., GRABOWSKI J., LORENC M., ZAGOŻDŻON P.P. 2002b - Radiometric dating of the Tertiary volcanics in Lower Silesia, Poland. III. K-Ar and palaeomagnetic data from Early Miocene basaltic volcanics near Jawor, Fore-Sudetic Block. Ann. Soc. Geol. Poloniae, 72 (3): 241-253.
  • 8. BIRKENMAJER K., PÉCSKAY Z., GRABOWSKI J., LORENC M., ZAGOŻDŻON P.P. 2004 - Radiometric dating of the Tertiary volcanics in Lower Silesia, Poland. IV. Further K-Ar and palaeomagnetic data from Late Oligocene to Early Miocene basaltic rocks of the Fore-Sudetic Block. Sudetes Mts. Ann. Soc. Geol. Pol., 74 (1): 1-19.
  • 9. BIRKENMAJER K., PÉCSKAY Z., GRABOWSKI J., LORENC M., ZAGOŻDŻON P.P. 2007 - Radiometric dating of the Tertiary volcanics in Lower Silesia, Poland. V. K-Ar and palaeomagnetic data from Late Oligocene to Early Miocene basaltic volcanics of the North-Sudetic Depression. Ann. Soc. Geol. Pol., 77 (1): 1-16.
  • 10. BIRKENMAJER K., PÉCSKAY Z., GRABOWSKI J., LORENCM.W., ZAGOŻDŻON P.P. 2011 - Radiometric dating of the tertiary volcanics in Lower Silesia, Poland. VI. K-Ar and palaeomagnetic data from basaltic rocks of the west Sudety Mountains and their northern foreland. Ann. Soc. Geol. Pol.,81: 115-131.
  • 11. BOLEWSKI A., MANECKI A. 1990 - Minerały i ich geneza. Utwory pozaziemskie (kosmomineralogia - minerały i skały Kosmosu). [W:] Bolewski A., Kubisz J., Manecki A., Żabiński W., Mineralogia ogólna. Wydaw. Geol., Warszawa: 446-454.
  • 12. BONIN B. 2012 - Extra-terrestrial igneous granites and related rocks: A review of their occurrence and petrogenesis. Lithos, 153: 3-24.
  • 13. BORKOWSKA M. 1985 - Skały gabrowe Masywu Nowej Rudy w Sudetach i ich minerały. Geol. Sudet., 20 (1): 3-35.
  • 14. CALZADA-DIAZ A., JOYK.H., CRAWFORD I.A., NORDHEIMT.A. 2015 - Constraining the source regions of lunar meteorites using orbital geochemical data. Meteorit. Planet. Sci., 50 (2): 214-228; doi: 10.1111/maps.12412
  • 15. CASANOVA S., ESPEJEL C., DEMPSTER A.G., ANDERSON R.C., CAPRARELLI G., SAYDAM S. 2020 - Lunar polar water resource exploration - Examination of the lunar cold trap reservoir system model and introduction of play-based exploration (PBE) techniques. Planet. Space Sci., 180; https://doi.org/10.1016/j.pss.2019.104742
  • 16. CIAZELA J., BAKALA J., KOWALINSKI M., PIETEREK B., STESLICKI M., CIAZELA M., PASLAWSKI G., ZALEWSKA N., STERCZEWSKI L., SZAFORZ Z., JOZEFOWICZ M., MARCINIAK D., FITT M., SNIADKOWSKI A., RATAJ M., MROZEK T. 2023 - Lunar ore geology and feasibility of ore mineral detection using a far-IR spectrometer. Front. Earth Sci., 11:1190825;doi: 10.3389/feart.2023.1190825
  • 17. DOMINGUEZ J.A., WHITLOW J. 2019 - Upwards migration phenomenon on molten lunar regolith: New challenges and prospects for ISRU. Advan. Space Res., 63:2220-2228; https://doi.org/10.1016/j.asr.2018.12.014
  • 18. ENGELSCHION V.S., ERIKSSON S.R., COWLEY A., FATERI M., MEURISSE A., KUEPPERS U., SPERL M. 2020 - EAC-1A: A novel large-volume lunar regolith simulant. Sci. Rep., 10: 5473; https://doi.org/10.1038/s41598-020-62312-4
  • 19. EUGSTER O., HERZOG G.F., MARTI K., CAFFEE M.W. 2006 - Irradiation Records, Cosmic-Ray Exposure Ages, and Transfer Times of Meteorites. [W:] Lauretta D.S., McSween H.Y. (red.), Meteorites and the Early Solar System II, Space Science Series, University of Arizona Press, 829-851.
  • 20. FA W., JIN Y.-Q. 2007 - Quantitative estimation of helium-3 spatial distribution in the lunar regolith layer. Icarus, 190: 15-23.
  • 21. FA W., JIN Y.-Q. 20 1 0 - Global inventory of Helium-3 in lunar regoliths estimated by a multi-channel microwave radiometer on the Chang-E 1 lunar satellite. Chinese Sci. Bull., 55 (35): 4005-4009.
  • 22. FLOYD P.A., KRYZA R., CROWLEY Q.G., WINCHESTER J.A., ABDEL WAHED M. 2002 - Ślęża ophiolite: geochemical features and relationship to Lower Palaeozoic rift magmatism in the Bohemian Massif. [W:] Winchester J.A., Pharaoh T.C., Verniers J. (red.) Palaeozoic Amalgamation of Central Europe. Geol. Soc. Lond. Spec. Publ., 201: 197-215.
  • 23. FORTEZZO C.M., SPUDIS P.D., HARREL S.L. 2020 - Release of the Digital Unified Global Geologic Map of the Moon At1:5,000,000-Scale. Paper presented at the 51st Lunar and Planetary Science Conference, Lunar and Planetary Institute, Houston, TX. https://www.hou.usra.edu/meetings/lpsc2020/pdf/2760.pdf
  • 24. GLADMAN B.J., BURNS J.A., DUNCAN M.J., LEVISON H.F. 1995 - The dynamical evolution of lunar impact ejecta. Icarus, 118:302-321.
  • 25. GLADMAN B.J., BURNS J.A., DUNCAN M., LEE P., LEVISON H.F. 1996 - The exchange of impact ejecta between terrestrial planets. Science, 271: 1387-1392.
  • 26. GREELEY R., BATSON R. 1999 - Atlas Układu Słonecznego NASA. Prószyński i S-ka, Warszawa.
  • 27. GROSSMAN K.D., SAKTHIVEL T.S., SIBILLE L., MANTOVANI J.G., SEAL S. 2019 - Regolith-derived ferrosilicon as a potential feedstock material for wire-based additive manufacturing. Advan. Space Res., 63: 2212-2219; https://doi.org/10.1016/j.asr.2018.12.002
  • 28. GUNIA P. 1992 - Petrologia skał ultrazasadowych z Masywu Braszowic-Brzeźnicy (Blok Przedsudecki). Geol. Sudet., 26 (1): 119-170.
  • 29. HADLER K., MARTIN D.J.P., CARPENTER J., CILLIERS J.J., MORSE A., STARR S., RASERA J.N., SEWERYN K., REISS P., MEURISSE A. 2020 - A universal framework for Space Resource Utilisation (SRU). Planet. Space Sci., 182; https://doi.org/10.1016/j.pss.2019.104811
  • 30. HAYNE P.O, HENDRIX A., SEFTON-NASH E., SIEGLER M.A., LUCEY P.G., RETHERFORD K.D., WILLIAMS J.-P., GREENHAGEN B.T., PAIGE D.A. 2015 - Evidence for exposed water ice in the Moon's south polar regions from Lunar Reconnaissance Orbiter ultraviolet albedo and temperature measurements. Icarus, 255: 58-69. http://dx.doi.org/10.1016/- j.icarus.2015.03.032
  • 31. HAYNE P.O., AHARONSON O., SCHÖRGHOFER N. 2021 - Micro cold traps on the Moon. Nature Astronom., 5: 169-175; https://doi.org/10.1038/s41550-020-1198-9
  • 32. HE H., JI J., ZHANG Y., HU S., LIN Y., HUI H., HAO J., LI R., YANG W., TIAN H., ZHANG Ch., ANAND M., TARTČSE R., GU L., LI J., ZHANG D., MAO Q., JIAL., LI X., CHEN Y., ZHANG L., NI H., WU S., WANG H., LI Q., HE H., XIANHUA Li X., WU F. 2023 - A solar wind-derived water reservoir on the Moon hosted by impact glass beads. Nature Geosci., https://doi.org/10.1038/s41561-023-01159-6
  • 33. HIESINGER H., HEAD J.W. 2006 - New View of Lunar Geoscience:An Introduction and Overview. Rev. Mineral. Geochem., 60: 1-81; https://doi.org/10.2138/rmg.2006.60.1
  • 34. HONNIBALL C.I., LUCEY P.G., LI S., SHENOY S., ORLANDO T.M., HIBBITTS C.A., HURLEY D.M., FARRELL W.M. 2021 - Molecular water detected on the sunlit Moon by SOFIA. Nat. Astronom. Lett., https://doi.org/10.1038/s41550-020-01222-x
  • 35. https://www.nasa.goV/specials/artemis/#top; dostęp: 3.02.2023 r.
  • 36. https://exolithsimulants.com/collections/lunar-simulants; dostęp: 3.12.2023 r.
  • 37. HU S., HE H., JI J., LIN Y., HUI H., ANAND M.,T ARTESE R., YAN Y., HAO J., LI R., GU L., GUO Q., HE H., OUYANGZ . 2021 - Adrylunar mantle reservoir for young mare basalts of Chang'e-5. Nature, 600: 49-53; https://doi.org/10.1038/s41586-021-04107-9
  • 38. JAMROZIK L. 1989 - Strefa mineralizacji ilmenitowej Strzegomiany-Kunów w intruzji gabrowej Ślęży w obrębie ofiolitu Sobótki (Dolny Śląsk). Prz. Geol., 37 (10): 477-484.
  • 39. JAUMANN R., HIESINGER H., ANAND M., CRAWFORD I.A., WAGNER R., SOHL F., JOLLIFF B.L., SCHOLTEN F., KNAPMEYER M., HOFFMANN H., HUSSMANN H., GROTT M., HEMPEL S., KÖHLERU., KROHN K., SCHMITZ N., CARPENTER J., WIECZOREK M., SPOHN T., ROBINSON M.S., OBERST J. 2012 - Geology, geochemistry, and geophysics of the Moon: Status of current understanding. Planet. Space Sci., 74: 15-41; http://dx.doi.org/10.1016/j.pss.2012.08.019
  • 40. JI J., GUO D., LIU J., CHEN S., LING Z., DING X., HAN K., CHEN J., CHENG W., ZHU K., LIU J., WANG J., CHEN J., OUYANG Z., 2022 - The 1:2,500,000-scale geologic map of the global moon. Sci. Bull., https://doi.org/10.1016/j.scib.2022.05.021
  • 41. JIN Y.-Q., FA W., WIECZOREK M.A. 2010 - Preliminary analysis of microwave brightness temperature of the lunar surface from Chang-E 1 multi-channel radiometer observation and inversion of regolith layer thickness. 41st Lunar and Planetary Science Conference, 1331.
  • 42. JOHNSON J.R., SWINDLE T.D., LUCEYP.G. 1999 - Estimated Solar Wind-Implanted Helium-3 Distribution on the Moon. Geophys. Res. Lett., 26 (3): 385-388.
  • 43. JUST G.H., SMITH K., JOY K.H., ROY M.J. 2020 - Parametric review of existing regolith excavation techniques for lunar In Situ Resource Utilisation (ISRU) and recommendations for future excavation experiments. Planet. Space Sci., 180; https://doi.org/10.1016/j.pss.2019.104746
  • 44. KALLIO E., DYADECHKIN S., WURZ P., KHODACHENKO M. 2019 - Space weathering on the Moon: Farside-nearside solar wind precipitation asymmetry. Planet. Space Sci., 166: 9-22. https://doi.org/10.1016/j.pss.2018.07.013
  • 45. KANAMORI H., UDAGAWA S., YOSHIDA T., MATSUMOTO S., TAKAGI K. 1998 - Properties of lunar soil simulant manufactured in Japan. Space, 98: 462-468; https://doi.org/10.1061/40339(206)53
  • 46. KIM K.J., WÖHLER Ch., BEREZHNOY A.A., BHATT M., GRUMPE A. 2019 - Prospective 3He-rich landing sites on the Moon. Planet. Space Sci., 177, 104686; https://doi.org/10.1016/j.pss.2019.07.001
  • 47. KOBLITZ J. 2010, MetBase® ver. 7.3. Meteorite Data Retrival Software. Ritterhude, Germany.
  • 48. KOZŁOWSKI S. 1975 - Surowce skalne Polski. Wydaw. Geol., Warszawa. LI Ch., HU H., YANG M., PEI Z., ZHOU Q, REN X., LIU B., LIU D., ZENG X., ZHANG G., ZHANG H., LIU J., WANG Q., DENG X., XIAO.C., YAO Y., XUE D., ZUO W., SU Y., WEN W., OUYANG Z. 2022a - Characteristics of the lunar samples returned by the Chang'E-5 mission. Nat. Sci. Rev., 9(2), nwab188; https://doi.org/10.1093/nsr/nwab188
  • 49. LI Ch., WEI K., LI Y., MAW., LEI Y., YU H., LIU J. 2022b - Anovel strategy to extract lunar mare KREEP-rich metal resources using a silicon collector. J. Rare Earths, https://doi.org/10.1016/j.jre.2022.07.002
  • 50. LI R., ZHOU G., YAN K., CHEN J.,CHEN D., CAI S., MOP.Q. 2022 - Preparation and characterization of a specialized lunar regolith simulant for use in lunar low gravity simulation. Internat. J. Min. Sci. Technolog., 32 (1): 1-15; https://doi.org/10.1016/j.ijmst.2021.09.003
  • 51. LIM S., ANAND M. 2019 - Numerical modelling of the microwave heating behaviour of lunar regolith. Planet. Space Sci., 179; https://doi.org/10.1016/j.pss.2019.104723
  • 52. LIU J., LIU B., REN X., LI Ch., SHU R., GUO L., YU S., ZHOU Q., LIU D., ZENG X., GAO X., ZHANG G., YAN W., ZHANG H., JIAL., JIN S., XU Ch., DENG X., XIE J., YANG J., HUANG Ch., ZUO W., SU Y., WEN W., OUYANG Z., 2022 - Evidence of water on the lunar surface from Chang'E-5 in-situ spectra and returned samples. Nat. Communicat., 13: 3119; https://doi.org/10.1038/s41467-022-30807-5
  • 53. LOCK S.J., STEWART S.T., PETAEV M.I., LEINHARDT Z., MACE M.T., JACOBSEN S.B., ĆUK M. 2018 - The origin of the Moon within a terrestrial synestia. J. Geophys. Res.: Planets, 123: 910-951; -https://doi.org/10.1002/2017JE005333
  • 54. LOMAX B.A., CONTI M., KHAN N., BENNETT N.S., GANIN A.Y., SYMES M.D. 2020 - Proving the viability of an electrochemical process for the simultaneous extraction of oxygen and production of metal alloys from lunar regolith. Planet. Space Sci., 180; https://doi.org/- 10.1016/j.pss.2019.104748
  • 55. ŁUSZCZEK K., PRZYLIBSKIT.A. 2019 - Potential deposits of selected metallic resources on L chondrite parent bodies. Planet. Space Sci., 168: 40-51; https://doi.org/10.1016/j.pss.2019.02.005
  • 56. ŁUSZCZEK K., PRZYLIBSKI T.A. 2021 – Selected metal resources on H chondrite parent bodies. Planet. Space Sci.,206, 105309. https://doi.org/10.1016/j.pss.2021.105309
  • 57. MANECKI A. 1988 - Meteoryty, tektyty i pyły kosmiczne oraz skały księżycowe. [W:] BOLEWSKI A., PARACHONIAK W. (red.), Petrografia. Wydaw. Geol., Warszawa: 610-619.
  • 58. MANECKI A. 2004 - Encyklopedia minerałów z polskim i angielskim słownikiem nazw. Minerały Ziemi i materii kosmicznej. Uczel. Wydaw. Nauk.-Dydakt., Kraków.
  • 59. MAYER C. 2012 - Lunar Sample Compendium. Astromaterial. Res. Explor. Sci. (ARES), NASA; https://curator.jsc.nasa.gov/lunar/lsc/index.cfm; dostęp: 2.02.2023 r.
  • 60. MAYERS J.S. 1988 - Oldest known terrestrial anorthosite at Mount Narryer, Western Australia. Precambr. Res., 38 (4): 309-323; https://doi.org/10.1016/0301-9268(88)90030-7
  • 61. MELOSH H.J. 2011 - Planetary Surface processes. Cambridge University Press, Cambridge, UK.
  • 62. MetBull, 2023 - The Meteoritical Bulletin Database, The Meteoritical Society; https://www.lpi.usra.edu/meteor/; dostęp: 3.02.2023 r.
  • 63. MISIAK J. 2022 - Geological exploration of the Moon. Gosp. Sur. Mineral., 38 (4): 91-104; doi: 10.24425/gsm.2022.144095
  • 64. NASA, 1988 - Lunar Helium-3 and Fusion Power. Proceedings of a workshop sponsored by the NASA Office of Exploration and the Department of Energy Office of Fusion Energy and held at the NASA Lewis Research Center Cleveland, Ohio April 25 and 26. National Aeronautics and Space Administration Scientific and Technical Information Branch.
  • 65. ORLOFF R.W. 2004 - Apollo bythe Numbers: A Statistical Reference. NASA History Division, Office of Policy and Plans, NASA Headquarters. Washington, DC.
  • 66. PAPIKE J.J., SIMON S.B., LAUL J.C.1 982 - The lunar regolith: Chemistry, mineralogy, and petrology. Rev. Geophys., 20 (4): 761; doi: 10.1029/rg020i004p00761
  • 67. PAPIKE J., TAYLOR L., SIMON S. 1991 - Lunar minerals. [W:] Heiken G.H., Vaniman D.T., French B.M. (red.), Lunar Sourcebook. Cambridge University Press, Cambridge, UK, 121-181.
  • 68. PENDIAS H., MACIEJEWSKI S. 1959 - Zbiór analiz chemicznych skał magmowych i metamorficznych Dolnego Śląska. Wydaw. Geol., Warszawa.
  • 69. PIN C., MAJEROWICZ A., WOJCIECHOWSKA I. 1988 - Upper Paleozoic oceanic crust in the Polish Sudetes: Nd-Sr isotope and trace element evidence. Lithos, 21: 195-209.
  • 70. PITCHER C., KÖMLE N., LEIBNIZ O., MORALES-CALDERON O., GAO Y., RICHTER L. 2016 - Investigation of the properties oficy lunar polar regolith simulants. Advances in Space Res., 57: 1197-1208; http://dx.doi.org/10.1016/j.asr.2015.12.030
  • 71. PRZYLIBSKI T.A., BLUTSTEIN K., ŁUSZCZEK K., GRUCHOT J. 2022a - Chondryt węglisty NWA 4446. Prz. Geol.,70 (7): 513-526,494. doi: http://dx.doi.org/10.7306/2022.17
  • 72. PRZYLIBSKI T.A., BLUTSTEIN K., SZCZĘŚNIEWICZ M., ŁUSZCZEK K. 2023 - Pierwsza tona Księżyca na Ziemi. Acta Soc. Metheorit. Pol., 14: 163-182.
  • 73. PRZYLIBSKI T.A., ŁUSZCZEK K., BLUTSTEIN K., SZCZĘŚNIEWICZ M., CIAPKA D. 2022b - Górnictwo pozaziemskie w Polsce. Prz. Górn., 3: 17-24.
  • 74. RASERA J.N., CILLIERS J.J., LAMAMY J.A., HADLER K.2020 - The beneficiation of lunar regolith for space resource utilisation: A review. Planet. Space Sci., 186; https://doi.org/10.1016/j.pss.2020.104879
  • 75. REISS P., KERSCHER F., GRILL L. 2020 - Thermogravimetric analysis of chemical reduction processes to produce oxygen from lunar regolith. Planet. Space Sci., 181; https://doi.org/10.1016/j.pss.2019.104795
  • 76. RUBIN A.E. 1997 - Mineralogy of meteorite groups. Meteorit. Planet. Sci., 32: 231-247; https://doi.org/10.1111/j.1945-5100.1997.tb01262.x
  • 77. RUBIN A.E., MAC. 2017 - Meteoritic minerals and their origins. Chemie der Erde, 77: 325-385; http://dx.doi.org/10.1016/j.chemer.2017.01.005
  • 78. RYKA J., RYKA W. 1966 - Katalog analiz chemicznych skał i minerałów Polski. Część III, 1958-1962. Pr. Inst. Geol., Tom III. Wydaw. Geol., Warszawa.
  • 79. SARGEANT H.M., BARBER S.J., ANAND M., ABERNETHY F.A.J., SHERIDAN S.,WRIGHT I.P.,MORSE A.D. 2021 - Hydrogen reduction of lunar samples in a static system for a water production demonstration on the Moon. Planet. Space Sci., 205; https://doi.org/10.1016/j.pss.2021.105287
  • 80. SCHLÜTER L., COWLEY A. 2020 - Review of techniques for In-Situ oxygen extraction on the moon. Planet. Space Sci., 181; https://doi.- org/10.1016/j.pss.2019.104753
  • 81. SCHWANDT C., HAMILTON J.A., FRAY D.J., CRAWFORD I.A., 2012 - The production of oxygen and metal from lunar regolith. Planet. Space Sci., 74: 49-56; http://dx.doi.org/10.1016/j.pss.2012.06.011
  • 82. SONG H., ZHANG J., SUN Y., LI Y., ZHANG X., MA D., KOU J.2021 - Theoretical Study on Thermal Release of Helium-3 in Lunar Ilmenite. Minerals, 11, 319; https://doi.org/10.3390/min11030319
  • 83. SPRAY J.G. 2010 - Generation of a lunar regolith agglutinate simulant using friction welding apparatus. Planet. Space Sci., 58: 1771-1774; https://doi.org/10.1016/j.pss.2010.09.002
  • 84. TAYLOR G.J., MARTEL L.M.V., KRING D.A. 2017 - Lunar granulitic breccias and their role in understanding the lunar mantle and large impact events. Lunar Planet. Sci., 48, 1591.pdf.
  • 85. TAYLOR S.R., MCLENNAN S.M. 2010 - Planetary crusts: Their composition, origin and evolution. Cambridge University Press, UK.
  • 86. TIKOO S.M., WEISS B.P., SHUSTER D.L., SUAVET C., WANG H., GROVE T.L. 2017 - A two-billion-year history for the lunar dynamo. Sci. Advances, 3: e1700207
  • 87. TOKLU Y.C., AÇIKBAȘ N.Ș., AÇIKBAȘ G., ÇERÇEVIK A.E., AKPINAR P. 2023 - Production ofa set of lunar regolith simulants based on Apollo and Chinese samples. Advan. Space Res., 72 (2): 565-576; https://doi.org/10.1016/j.asr.2023.03.035
  • 88. WARREN P.H. 1994 - Lunar and Martian meteorite delivery services. Icarus, 111: 338-363.
  • 89. WASILEWSKI T.G. 2021 - Lunarthermalmining: Phase change interface movement, production decline and implications for systems engineering. Planet. Space Sci., 199, 105199; https://doi.org/10.1016/j.pss.2021.105199
  • 90. WASILEWSKI T.G., BARCIŃSKI T., MARCHEWKA M. 2021 - Experimental investigations of thermal properties of icy lunar regolith and their influence on phase change interface movement. Planet. Space Sci., 200, 105197; https://doi.org/10.1016/j.pss.2021.105197
  • 91. WIDDOWSON M. 2011 - Planetary volcanism - ultima thule? [W:] ROTHERY D.A., MCBRIDE N., GILMOUR I. (red.), An introduction to the Solar System. Cambridge University Press, Cambridge, UK, 3: 83-126.
  • 92. WIECZOREK M., JOLLIFF B., KHAN A., PRITCHARD M.E., WEISS B.P., WILLIAMS L.L., HOOD L.L., RIGHTER K., NEAL C., SHEARER C.K., McCALLUM I.S., TOMPKINS S., HAWKE B.R., PETERSON C.A., GILLIS J.J., BUSSEY D.B.J. 2006. - The constitution and structure of the lunar interior. Rev. Mineral. Geochem., 60: 221-364.
  • 93. WIŚNIEWSKI Ł., WASILEWSKI G., KĘDZIORA B., GRYGORCZUK J. 2022 - Wybrane właściwości regolitu i ich istotny wpływ na realizację misji eksploracyjnych. Acta Soc. Metheorit. Pol., 13: 107-119.
  • 94. WOJTULEK P.M., SCHULZ B., KLEMD R., GIL G., DAJEK M., DELURA K. 2022 - The Central-Sudetic ophiolites - Remnants of the SSZ-type Devonian oceanic lithosphere in the European part of the Variscan Orogen. Gondwana Res., 105: 343-365; https://doi.org/- 10.1016/j.gr.2021.09.015
  • 95. YAMASHITA N., HASEBE N., REEDY R.C., KOBOYASHI S., KAROUJI Y., HAREYAMA M., SHIBAMURA E., KOBAYASHI M.-N., OKUDAIRA O., d'USTON C., GASNAULT O., FORNI O., KIM K.J. 2010 - Uranium on the Moon: Global distribution and U/Th ratio. Geophys. Res. Lett., 37, L10201; https://doi.org/10.1029/2010GL043061
  • 96. ZHENG Y., WANG S., ZIYUAN O., YONGLIAO Z., JIANZHONG L., CHUNLAI L., XIONGYAO L., JUNMING F. 2009 - CAS-1 lunar soil simulant. Advan. Space Res., 43: 448-454; https://doi.org/10.1016/- j.asr.2008.07.006
  • 97. ZHOU Ch., TANG H., LI X., ZENG X., MO B., YU W., WU Y., ZENG X., LIU J., WEN Y. 2022 - Chang'E-5 samples reveal high water content in lunar minerals. Nat. Communicat., 13: 5336; https://doi.org/10.1038/- s41467-022-33095-1
  • 98. ZWIERZYŃSKI A.J., TEPER W., WIŚNIOWSKI R., GONET A., BURATOWSKI T., UHL T., SEWERYN K. 2021 - Feasibility study of low mass and low energy consumption drilling devices for future space (mining surveying) missions. Energies, 14, 5005; https://doi.org/10.3390/en14165005
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45f473ab-0f6f-4d58-b68c-720d13834419
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.