Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this study is to establish a thorough model for appraisal of size-dependent thermoelastic vibrations of Timoshenko nanobeams by capturing small-scale effect on both structural and thermal fields. With the intention of incorporating size effect within motion and heat conduction equations, nonlocal strain gradient theory (NSGT) as well as nonclassical heat conduction model of Guyer and Krumhansl (GK model) are exploited. For the sake of generalization and clarifying the impact of nonclassical scale parameters on results, by introducing some nondimensional quantities, the size-dependent coupled thermoelastic equations are written in dimensionless form. By applying the Laplace transform to this system of differential equations, thermoelastic responses of a simply supported Timoshenko nanobeam under dynamic load are extracted in closed forms. In order to highlight the influence of scale parameters on thermoelastic behavior of Timoshenko nanobeams, a variety of numerical results is provided. The discrepancy between classical and nonclassical outcomes betokens the salient role of structural and thermal scale parameters in accurate analysis of nanobeams. In addition, findings reveal that utilization of NSGT gives the means to capture both stiffness softening and stiffness enhancement characteristic of small-sized structures, so that according to the relative values of two scale parameters of NSGT, the nonclassical model of Timoshenko nanobeam can exhibit either softening or hardening behavior in comparison with the classical one.
Czasopismo
Rocznik
Tom
Strony
655--674
Opis fizyczny
Bibliogr. 62 poz., wykr.
Twórcy
autor
- Infrastructure Construction Departments, XinXiang University, XinXiang 453000, HeNani, China
autor
- University of Shanghai for Science and Engineering, Shanghai 200093, China
autor
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
Bibliografia
- [1] Fleck NA, Muller GM, Ashby MF, Hutchinson JW. Strain gradient plasticity: theory and experiment. Acta Metall Mater. 1994;42(2):475–87.
- [2] Ma Q, Clarke DR. Size dependent hardness of silver single crystals. J Mater Res. 1995;10(4):853–63.
- [3] Stölken JS, Evans AG. A microbend test method for measuring the plasticity length scale. Acta Mater. 1998;46(14):5109–15.
- [4] Chong AC, Lam DC. Strain gradient plasticity effect in indentation hardness of polymers. J Mater Res. 1999;14(10):4103–10.
- [5] Toupin RA. Theories of elasticity with couple-stress. Arch Ration Mech Anal. 1964;17(2):85–112.
- [6] Eringen AC. Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci. 1972;10(5):425–35.
- [7] Yang FACM, Chong ACM, Lam DCC, Tong P. Couple stress based strain gradient theory for elasticity. Int J Solids Struct. 2002;39(10):2731–43.
- [8] Mindlin RD. Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct. 1965;1(4):417–38.
- [9] Lim CW, Zhang G, Reddy JN. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids. 2015;78:298–313.
- [10] Farokhi H, Ghayesh MH. Nonlinear motion characteristics of microarches under axial loads based on modified couple stress theory. Arch Civ Mech Eng. 2015;15(2):401–11.
- [11] Zheng F, Lu Y, Ebrahimi-Mamaghani A. Dynamical stability of embedded spinning axially graded micro and nanotubes conveying fluid. Waves Random Complex Media 2020;1–39. https://doi.org/10.1080/17455030.2020.1821935.
- [12] Borjalilou V, Asghari M, Bagheri E. Small-scale thermoelastic damping in micro-beams utilizing the modified couple stress theory and the dual-phase-lag heat conduction model. J Therm Stresses. 2019;42(7):801–14.
- [13] Arshid E, Arshid H, Amir S, Mousavi SB. Free vibration and buckling analyses of FG porous sandwich curved microbeams in thermal environment under magnetic field based on modified couple stress theory. Arch Civ Mech Eng. 2021;21(1):1–23.
- [14] Yang Z, Lu H, Sahmani S, Safaei B. Isogeometric couple stress continuum-based linear and nonlinear flexural responses of functionally graded composite microplates with variable thickness. Arch Civ Mech Eng. 2021;21(3):1–19.
- [15] Borjalilou V, Asghari M. Size-dependent analysis of thermoelastic damping in electrically actuated microbeams. Mech Adv Mater Struct. 2021;28(9):952–62.
- [16] Soleimani I, Beni YT. Vibration analysis of nanotubes based on two-node size dependent axisymmetric shell element. Arch Civ Mech Eng. 2018;18:1345–58.
- [17] Li F, Esmaeili S. On thermoelastic damping in axisymmetric vibrations of circular nanoplates: incorporation of size effect into structural and thermal areas. Eur Phys J Plus. 2021;136(2):1–17.
- [18] Glabisz W, Jarczewska K, Holubowski R. Stability of Timoshenko beams with frequency and initial stress dependent nonlocal parameters. Arch Civ Mech Eng. 2019;19:1116–26.
- [19] Alipour MM, Shariyat M. Nonlocal zigzag analytical solution for Laplacian hygrothermal stress analysis of annular sandwich macro/nanoplates with poor adhesions and 2D-FGM porous cores. Arch Civ Mech Eng. 2019;19(4):1211–34.
- [20] Wang G, Zhang Y, Arefi M. Three-dimensional exact elastic analysis of nanoplates. Arch Civ Mech Eng. 2021;21(3):1–14.
- [21] Borjalilou V, Taati E, Ahmadian MT. Bending, buckling and free vibration of nonlocal FG-carbon nanotube-reinforced composite nanobeams: exact solutions. SN Appl Sci. 2019;1(11):1–15.
- [22] Arefi M, Civalek O. Static analysis of functionally graded composite shells on elastic foundations with nonlocal elasticity theory. Arch Civ Mech Eng. 2020;20(1):1–17.
- [23] Yang Z, Cheng D, Cong G, Jin D, Borjalilou V. Dual-phase-lag thermoelastic damping in nonlocal rectangular nanoplates. Waves Random Complex Media 2021;1–20. https://doi.org/10.1080/17455030.2021.1903117.
- [24] Sahmani S, Aghdam MM. Imperfection sensitivity of the size-dependent postbuckling response of pressurized FGM nanoshells in thermal environments. Arch Civ Mech Eng. 2017;17(3):623–38.
- [25] Borjalilou V, Asghari M. Size-dependent strain gradient-based thermoelastic damping in micro-beams utilizing a generalized thermoelasticity theory. Int J Appl Mech. 2019;11(01):1950007.
- [26] Borjalilou V, Asghari M. Thermoelastic damping in strain gradient microplates according to a generalized theory of thermoelasticity. J Therm Stresses. 2020;43(4):401–20.
- [27] Sobhy M. Piezoelectric bending of GPL-reinforced annular and circular sandwich nanoplates with FG porous core integrated with sensor and actuator using DQM. Arch Civ Mech Eng. 2021;21(2):1–18.
- [28] Dindarloo MH, Zenkour AM. Nonlocal strain gradient shell theory for bending analysis of FG spherical nanoshells in thermal environment. Eur Phys J Plus. 2020;135(10):1–18.
- [29] Bai Y, Suhatril M, Cao Y, Forooghi A, Assilzadeh H. Hygro–thermo–magnetically induced vibration of nanobeams with simultaneous axial and spinning motions based on nonlocal strain gradient theory. Eng Comput. 2021;1–18. https://doi.org/10.1007/s00366-020-01218-1.
- [30] Zhu X, Lu Z, Wang Z, Xue L, Ebrahimi-Mamaghani A. Vibration of spinning functionally graded nanotubes conveying fluid. Eng Comput. 2020;1–22. https://doi.org/10.1007/s00366-020-01123-7.
- [31] Ignaczak J, Ostoja-Starzewski M. Thermoelasticity with finite wave speeds. Oxford University Press; 2010.
- [32] Lord HW, Shulman Y. A generalized dynamical theory of thermoelasticity. J Mech Phys Solids. 1967;15(5):299–309.
- [33] Tzou DY. Macro-to microscale heat transfer: the lagging behavior. Wiley; 2014.
- [34] Guyer RA, Krumhansl JA. Solution of the linearized phonon Boltzmann equation. Phys Rev. 1966;148(2):766.
- [35] Zener C. Internal friction in solids. I. Theory of internal friction in reeds. Phys Rev. 1937;52(3):230.
- [36] Lifshitz R, Roukes ML. Thermoelastic damping in micro-and nanomechanical systems. Phys Rev B. 2000;61(8):5600.
- [37] Guo FL, Rogerson GA. Thermoelastic coupling effect on a micro-machined beam resonator. Mech Res Commun. 2003;30(6):513–8.
- [38] Sun Y, Fang D, Soh AK. Thermoelastic damping in micro-beam resonators. Int J Solids Struct. 2006;43(10):3213–29.
- [39] Sun Y, Fang D, Saka M, Soh AK. Laser-induced vibrations of micro-beams under different boundary conditions. Int J Solids Struct. 2008;45(7–8):1993–2013.
- [40] Taati E, Najafabadi MM, Reddy JN. Size-dependent generalized thermoelasticity model for Timoshenko micro-beams based on strain gradient and non-Fourier heat conduction theories. Campos Struct. 2014;116:595–611.
- [41] Zenkour AM. Thermoelastic response of a microbeam embedded in visco-Pasternak’s medium based on GN-III model. J Therm Stresses. 2017;40(2):198–210.
- [42] Abouelregal AE, Zenkour AM. Nonlocal thermoelastic model for temperature-dependent thermal conductivity nanobeams due to dynamic varying loads. Microsyst Technol. 2018;24(2):1189–99.
- [43] Hosseini SM. Analytical solution for nonlocal coupled thermoelasticity analysis in a heat-affected MEMS/NEMS beam resonator based on Green–Naghdi theory. Appl Math Model. 2018;57:21–36.
- [44] Kumar H, Mukhopadhyay S. Thermoelastic damping analysis in microbeam resonators based on Moore–Gibson–Thompson generalized thermoelasticity theory. Acta Mech. 2020;231:3003–15.
- [45] Hamidi BA, Hosseini SA, Hassannejad R, Khosravi F. Theoretical analysis of thermoelastic damping of silver nanobeam resonators based on Green–Naghdi via nonlocal elasticity with surface energy effects. Eur Phys J Plus. 2020;135(1):1–20.
- [46] Kumar R. Effect of phase-lag on thermoelastic vibration of Timoshenko beam. J Therm Stresses. 2020;43(11):1337–54.
- [47] Kumar H, Mukhopadhyay S. Response of deflection and thermal moment of Timoshenko microbeams considering modified couple stress theory and dual-phase-lag heat conduction model. Campos Struct. 2021;263:113620.
- [48] Shafiei N, She GL. On vibration of functionally graded nano-tubes in the thermal environment. Int J Eng Sci. 2018;133:84–98.
- [49] Li L, Hu Y. Nonlinear bending and free vibration analyses of non-local strain gradient beams made of functionally graded material. Int J Eng Sci. 2016;107:77–97.
- [50] Guo FL, Jiao WJ, Wang GQ, Chen ZQ. Distinctive features of thermoelastic dissipation in microbeam resonators at nanoscale. J Therm Stresses. 2016;39(3):360–9.
- [51] Arash B, Ansari R. Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain. Phys E. 2010;42(8):2058–64.
- [52] Wang Q, Wang CM. The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnology. 2007;18(7):075702.
- [53] Zhang YQ, Liu GR, Han X. Effect of small length scale on elastic buckling of multi-walled carbon nanotubes under radial pressure. Phys Lett A. 2006;349(5):370–6.
- [54] Sears A, Batra RC. Macroscopic properties of carbon nanotubes from molecular-mechanics simulations. Phys Rev B. 2004;69(23):235406.
- [55] Li X, Li L, Hu Y, Ding Z, Deng W. Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory. Compos Struct. 2017;165:250–65.
- [56] Zeighampour H, Beni YT, Dehkordi MB. Wave propagation In viscoelastic thin cylindrical nanoshell resting on a visco-Pasternak foundation based on nonlocal strain gradient theory. Thin-Walled Struct. 2018;122:378–86.
- [57] Hu YG, Liew KM, Wang Q, He XQ, Yakobson BI. Nonlocal shell model for elastic wave propagation in single-and double-walled carbon nanotubes. J Mech Phys Solids. 2008;56(12):3475–85.
- [58] Zeighampour H, Beni YT. Size dependent analysis of wave propagation in functionally graded composite cylindrical microshell reinforced by carbon nanotube. Compos Struct. 2017;179:124–31.
- [59] Maranganti R, Sharma P. Length scales at which classical elasticity breaks down for various materials. Phys Rev Lett. 2007;98(19):195504.
- [60] Zhang H, Kim T, Choi G, Cho HH. Thermoelastic damping In micro-and nanomechanical beam resonators considering size effects. Int J Heat Mass Transf. 2016;103:783–90.
- [61] Bae MH, Li Z, Aksamija Z, Martin PN, Xiong F, Ong ZY, Pop E. Ballistic to diffusive crossover of heat flow in graphene ribbons. Nat Commun. 2013;4(1):1–7.
- [62] Xu X, Pereira LF, Wang Y, Wu J, Zhang K, Zhao X, Özyilmaz B. Length-dependent thermal conductivity in suspended single-layer graphene. Nat Commun. 2014;5(1):1–6.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45ed1b8b-4329-453d-aef6-0a762a744218