PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A study on the dissolution kinetics of iron oxide leaching from clays by oxalic acid

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Clay is widely used in a number of industries due to its special properties like fine particle size, brightness and whiteness, chemical inertness, platy structure, etc. In this study, the general characteristics of clays have been investigated by XRF, XRD, FT-IR, TG-DTA and SEM. The presence of iron as an impurity decreases its commercial value due to giving unwanted colors to clay mineral. Therefore, the dissolution capacity of clay ore was investigated by oxalic acid leaching. Under optimized leaching conditions (0.8 M oxalic acid concentration, 85°C reaction temperature, 1.75 ambient pH, 106+75 µm particle size, 15% w/v solids concentration and 150 min. leaching time) with 250 rpm stirring, 83.90% of Fe2O3 was removed. The amount of iron oxide, the main impurity in the clay, has been reduced from 2.70 to 0.40%. The iron dissolution kinetics was mainly controlled by internal diffusion control of shrinking core model and activation energy, Ea, of 26.29 kJ/mol was obtained for the process. The results also showed that the studied clays have adequate characteristics for ceramics industry, earthenware and porcelain production.
Rocznik
Strony
97--111
Opis fizyczny
Bibliogr. 68 poz., rys.
Twórcy
  • General Directorate of Minerals Research and Exploration, 42100, Konya, Turkey
Bibliografia
  • ABEL, O.T., OLADIMEJI, L.A., OLUWATOYIN, O.A., 2012. Compositional Features and Industrial Application ofIkere Kaolinite Southwestern Nigeria. Res. J. Engineer. Appl. Sci. 1, 5, 327-333.
  • ABUH, M.A., ABIA-BASSEY, N., UDEINYA, T.C., NWANNEWUIHE, H.U., ABONG, A.A., AKPOMIE, K.G.,2014. Industrial Potentials of Adiabo Clay in Calabar Municipal of Cross River State South-South Nigeria. Asia Pac. J. Sci. Technol. 15, 1, 63-75.
  • AJEMBA, R.O., ONUKWULI, O.D., 2012. Kinetic Model for Ukpor Clay Dissolution in Hydrochloric Acid Solution.J. Emer. Trends Eng. Appl. Sci. 3, 448–454.
  • ANTONIJEVIC, M.M., JANKOVIC, Z.D., DIMITRIJEVIC, M.D., 2004. Kinetics of Chalcopyrite Dissolution by Hydrogen Peroxide in Sulphuric Acid. Hydrometallurgy. 71, 3, 329-334.
  • AMBIKADEVI, V.R., LALITHAMBIKA, M., 2000. Effect of Organic Acids on Ferric Iron Removal from IronStained Kaolinite. Appl. Clay Sci. 16, 133-145.
  • AYANDA, O.S., ADEKOLA, F.A., 2012. Leaching of Nigerian Columbite in Hydrochloric Acid: Dissolution Kinetics. Int.J. Metall. Eng. 1, 3, 35-39.
  • BABA, A.A., ADEKOLA, F.A., 2012. A Study of the Dissolution Kinetics of a Nigerian Galena Ore in HydrochloricAcid. J. Saudi Chem. Soc. 16, 4, 377-386.
  • BABA, A.A., ADEKOLA, F.A., BALE, R.B., 2009. Development of a Combined Pyro- and Hydrometallurgical Route to Treat Zinc-Carbon Batteries. J. Hazard. Mater. 171, 1, 838-844.
  • BABA, A.A., MOSOBALAJE, M.A., IBRAHIM, A.S., GIRIGISU, S., ELETTA, A.A., ALUKO, F.I., ADEKOLA, F.A., 2015. Bleaching of Nigerian Kaolin by Oxalic Acid Leaching. J. Chem. Technol. Metall. 50, 5, 623-630.
  • BABA, A.A., OLUMODEJI, O.O., ADEKOLA, F.A., LAWAL, M., AREMU, A.S., 2014. Quantitative Leaching of a SpentCell Phone Printed Circuit Board by Hydrochloric Acid. Metall. Mater. Eng. 20, 2, 119-129.
  • BONNEVILLE, S., BEHRENDS, T., VANCAPPELLEN, P., 2009. Solubility and Dissimilatory Reduction Kinetics of Iron(III) Oxyhydroxides: A Linear Free Energy Relationship. Geochim. Cosmochim. Ac. 73, 5273-5282.
  • CELIK, A.G., KILIC, A.M., CAKAL, G.O., 2013. Expanded Perlite Aggregate Characterization for use as a Lightweight Construction Raw Material. Physicochem. Probl. Miner. Process. 49, 2, 689-700.
  • CELIK, H., 2010. Technological Characterization and Industrial Application of Two Turkish Clays for the Ceramic Industry.Appl. Clay Sci. 50, 245-254.
  • CETINTAS, S., BINGOL, D., 2020. Dissolution Kinetics of Manganese during Nickel Recovery from High Iron Grade Laterite by Acid Leaching Combined Naoh-Assisted Mechanochemical Technology. Cumhuriyet Sci. J. 41,2, 397-406.
  • CHANG, L.L.Y., 2002. Industrial Mineralogy Materials, Processes and Uses. New Jersey: Prentice Hall, USA.
  • CORNELL, R.M., SCHWERTMANN, U., 2003. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, Wiley-VCH Publishers, New York, USA.
  • DEHGHAN, R., NOAPARAST, M., KOLAHDOOZAN, M., 2009. Leaching and Kinetic Modelling of Low-Grade Calcareous Sphalerite in Acidic Ferric Chloride Solution. Hydrometallurgy. 96, 4, 275-282.
  • DU, R.L., WU, K., XU, D.A., CHAO, C.Y., ZHANG, L., DU, X.D., 2016. A Modified Arrhenius Equation to Predict the Reaction Rate Constant of Anyuan Pulverized-Coal Pyrolysis at Different Heating Rates. Fuel Process. Technol. 148, 295-301.
  • ERDOGAN, Y., 2015. Physicochemical Properties of Handere Clays and Their use as a Building Material. J. Chem. 1, 1-6.
  • FABIO, L.M., FABIO, L., SUSANA, M.S., MONICA, R., PAULO, S.P., CARLOS, R.A., 2009. Chemical Characterization of Clay SRM by X-Ray Fluorescence Results Comparison from Different Laboratories. Semina: Cienc. Exatas Tecnol. 30, 2, 145-150.
  • FADIL-DJENABOUA, S., NDJIGUIA, P.D., MBEY, J.A., 2015. Mineralogical and Physicochemical Characterization of Ngaye Alluvial Clays (Northern Cameroon) and Assessment of Its Suitability in Ceramic Production. J. Asian Ceram. Soc. 3, 50-58.
  • GAO, L., RAO, B., DAI, H., XIE, H., WANG, P., MA, F., 2019. Kinetics of Sulphuric Acid Leaching of Titanium from Refractory Anatase under Atmospheric Pressure. Physicochem. Probl. Miner. Process. 55, 2, 467-478.
  • GARG, N., SKIBSTED, J., 2019. Dissolution Kinetics of Calcined Kaolinite and Montmorillonite in Alkaline Conditions: Evidence for Reactive Al(V) Sites. J. Am. Ceram. Soc. 102, 12, 7720-7734.
  • GATES, W.P., ANDERSON, J.S., RAVEN, M.D., CHURCHMAN, G.J., 2002. Mineralogy of a Bentonite from Miles, Queensland, Australia and Characterization of Its Acid Activation Products. Appl. Clay Sci. 20, 4, 189-197.
  • GBOR, P.K., JIA, C.Q., 2004. Critical Evaluation of Coupling Particle Size Distribution with the Shrinking Core Model. Chem. Eng. Sci. 59, 1979-1987.
  • GHASSA, S., NOAPARAST, M., SHAFAEI, S.Z., ABDOLLAHI, H., GHARABAGHI, M., BORUOMAND, Z., 2017. A Study on the Zinc Sulfide Dissolution Kinetics with Biological and Chemical Ferric Reagents. Hydrometallurgy, 171, 362-373.
  • HERNANDEZ, R.A., GARCIA, F.L., HERNANDEZ, L.E., LUEVANOS, A.M.,2013. Iron Removal from Kaolinite Clayby Leaching to Obtain Whiteness Index. 3rd Congress on Materials Science and Engineering. 1-5.
  • HOIDY, W.H., AHMAD, B.A., MULLER, J.A., IBRAHIM, N.A., 2009. Synthesis and Characterization of Organoclayfrom Sodium Montmorillonite and Fatty Hydroxamic Acids. Am. J. Appl. Sci. 6, 8, 1567-1572.
  • HURSIT, M., LACIN, O., SARAC, H., 2009. Dissolution Kinetics of Smithsonite Ore as an Alternative Zinc Source with an Organic Leach Reagent. J. Taiwan Inst. Chem. Eng. 40, 6-12.
  • LEGORRETA, F., SALINAS, E., CERECEDO, E., 2015. Kinetics Study of Iron Leaching from Kaolinitic Clay Using Oxalic Acid. Eur. Sci. J. 11, 12, 12-23.
  • LEE, O.S., TAM, T., YI, Y.P., SEONG, J.K., MYONG, J.K., 2006. Study on the Kinetics of Iron Oxide Leaching by Oxalic Acid. Int. J. Miner. Process. 80, 2, 144-152.
  • LI, J., XU, Z., WANG, R., GAO, Y., YANG, Y., 2019. Study on Leaching Kinetics of Laterite Ore Using Hydrochloric Acid. Physicochem. Probl. Miner. Process. 55, 3, 711-720.
  • LI, M., ZHENG, S., LIU, B., DU, H., DREISINGER, D.B., TAFAGHODI, L., ZHANG, Y., 2017. The Leaching Kinetics of Cadmium from Hazardous Cu-Cd Zinc Plant Residues. Waste Manage. 65, 128-138.
  • LIMA, P.E.A., ANGÉLICA, R.S., NEVES, R.F., 2017. Dissolution Kinetics of Amazonian Metakaolin in Hydrochloric Acid. Clay Miner. 52, 75–82.
  • LORI, J.A., LAWAL, A.O., EKANEM, E.J., 2007. Characterization and Optimization of Deferration of Kankara Clay. J. Eng. Appl. Sci. 2, 5, 60-74.
  • MACCARTHY, J., NOSRATI, A., SKINNER, W., ADDAIMENSAH, J., 2016. Atmospheric Acid Leaching Mechanisms and Kinetics and Rheological Studies of a Low Grade Saprolitic Nickel Laterite Ore. Hydrometallurgy. 160, 26-37.
  • MADEJOVA, J., BUJDAK, J., JANEK, M., KOMADEL, P., 1998. Comparative FT-IR Study of Structural Modificationsduring Acid Treatment of Dioctahedral Smectites and Hectorite. Spectrochim. Acta, Part A. 54, 1397-1406.
  • MANDAL, S.K., BANERJEE, P.C., 2004. Iron Leaching from China Clay with Oxalic Acid: Effect of Different Physico-Chemical Parameters. Int. J. Miner. Process. 74, 263-270.
  • MILOŠEVIĆ, M., LOGAR, M., KALUĐEROVIĆ, L., JELIĆ, I., 2017. Characterization of Clays from Slatina (Serbia) for Potential Uses in the Ceramic Industry. Energy Procedia. 125, 650-655.
  • MURRAY, H.H., 1999. Applied Clay Mineralogy Today and Tomorrow. Clay Miner. 34, 39-49.
  • NAVIAUX, J.D., SUBHAS, A.V., ROLLINS, N.E., DONG, S., BERELSON, W.M., ADKINS, J.F., 2019. Temperature Dependence of Calcite Dissolution Kinetics in Seawater. Geochim. Cosmochim. Acta. 246, 363-384.
  • NJOKA, E.N., OMBAKA, O., GICHUMBI, J.M., KIBAARA, D.I., NDERI, O.M., 2015. Characterization of Clays from Tharaka-Nithi County in Kenya for Industrial and Agricultural Applications. Afr. J. Environ. Sci. Technol. 9, 3, 228-243.
  • NZEUKOU, A.N., FAGEL, N., NJOYA, A., KAMGANG, M.V., MEDJO, R.E., MELO, U.C., 2013. Mineralogy and Physicochemical Properties of Alluvial Clays from Sanaga Valley (Center, Cameroon): Suitability for Ceramic Application. Appl. Clay Sci. 83, 238-243.
  • RAHMAN, M.A., MUNEER, M., 2005. Photocatalysed Degradation ofTwo Selected Pesticide Derivatives, Dichlorvos and Phosphamidon in Aqueous Suspensions of Titanium Dioxide. Desalination. 181, 1, 161-172.
  • PANIAS, D., TAXIARCHOU, M., DOUNI, I., PASPALIARIS, I., KONTOPOULOS, A., 1996. Thermodynamic Analysis of the Reactions of Iron Oxides: Dissolution in Oxalic Acid. Can. Metall. Q. 35, 363-373.
  • PARIYAN, K., HOSSEINI, M.R., AHMADI, A., ZAHIRI, A., 2019. Optimization and Kinetics of Oxalic Acid Treatment of Feldspar for Removing the Iron Oxide Impurities. Sep. Sci. Technol. 55, 2, 1-12.
  • SAIKIA, N.J., BHARALI, D.J., SENGUPTA, P., BORDOLOI, D., GOSWAMEE, R.L., SAIKIA, P.C., BORTHAKUR, P.C., 2003. Characterization, Beneficiation and Utilization of a Kaolinite Clay from Assam, India. Appl. Clay Sci. 24, 93-103.
  • SAKLAR, S., YORUKOGLU, A., 2015. Effects of Acid Leaching on Halloysite. Physicochem. Probl. Miner. Process. 51, 1, 83-94.
  • SANDA, O., TAIWO, E.A., 2016. Investigation of Dissolution Kinetics of a Nigerian Columbite in Hydrofluoric Acid Using the Shrinking Core Model. Niger. J. Technol. 35, 4, 841-846.
  • SANDLER, A., 2013. Clay Distribution over the Landscape of Israel: from the Hyper-Arid to the Mediterranean Climate Regimes. Catena. 110, 119-132.
  • SANTOS, M.F.M., FUJIWARA, E., SCHENKEL, E.A., ENZWEILER, J., SUZUKI, C.K., 2015. Processing of Quartz Lumps Rejected by Silicon Industry to Obtain a Raw Material for Silica Glass. Int. J. Miner. Process. 135, 65-70.
  • SEYED-GHASEMI, S.M., AZIZI, A., 2017. Investigation of Leaching Kinetics of Zinc from a Low-Grade Ore in Organic and Inorganic Acids. J. Min. Environ. 8, 4, 579-591.
  • SHI, Z., BONNEVILLE, S., KROM, M.D., CARSLAW, K.S., JICKELLS, T.D., BAKER, A.R., BENNING, L.G., 2011. Iron Dissolution Kinetics of Mineral Dust at Low pH During Simulated Atmospheric Processing. Atmos. Chem. Phys. 11, 995-1007.
  • SULTANA, U.K. GULSHAN, F., KURNY, A.S.W., 2014. Kinetics of Leaching of Iron Oxide in Clay in Oxalic Acid and in Hydrochloric Acid Solutions. Mater. Sci. Metall. Eng. 2, 1, 5-10.
  • SULTANA, U.K., KURNY, A.S.W., 2012. Dissolution Kinetics of Iron Oxides in Clay in Oxalic Acid Solutions. Int. J. Miner. Metall. Mater. 19, 1083-1087.
  • TANDA, B.C., EKSTEEN, J.J., ORABY, E.A., 2018. Kinetics of Chalcocite Leaching in Oxygenated Alkaline Glycine Solutions. Hydrometallurgy. 178, 264-273.
  • TAO, L., WANG, L., YANG, K., WANG, X., CHEN, L., NING, P., 2021. Leaching of Iron from Copper Tailings by Sulfuric Acid: Behavior, Kinetics and Mechanism. RSC Adv. 11, 5741-5752.111 Physicochem. Probl. Miner. Process., 57(3), 2021, 97-111
  • TEMUUJIN, J., JADAMBAA, T., BURMAA, G., ERDENECHIMEG, S., AMARSANAA, J., MACKENZIE, K.J., 2004. Characterization of Acid Activated Montmorillonite Clay from Tuulant (Mongolia). Ceram. Int. 30, 251-255.
  • TEMUUJIN, J., OKADA, K., JADAMBAA, T., MACKENZIE, K.J.D., AMARSANAA, J., 2002. Effect of Grinding on the Preparation of Porous Material from Talc by Selective Leaching. J. Mater. Sci. Lett. 21, 1607-1609.
  • TUNCUK, A., AKCIL, A., 2016. Iron Removal in Production of Purified Quartz by Hydrometallurgical Process. Int. J. Miner. Process. 153, 1-29.
  • VAPUR, H., TOP, S., DEMIRCI, S., 2017. Purification of Feldspar from Colored Impurities Using Organic Acids. Physicochem. Probl. Miner. Process. 53: 150-160.
  • VITRA, R.L., 2009. U.S. Geological Survey, Mineral Commodity Summaries: Clays. Washington: United States Government Printing Office, USA.
  • WU, M.C., KUO, S.L., LIN, J.C., MA, C.M., HONG, G.B., CHANG, C.T., 2011. Studies on Certain Physical Properties of Modified Smectite Nanocatalysts. Appl. Surf. Sci. 257, 13, 5641-5646.
  • YANG, C.Q., LI, S.Q., 2020. Kinetics of Iron Removal from Quartz under Ultrasound-Assisted Leaching. High Temp. Mater. Process. 39, 1, 395-404.
  • ZHANG, C., MIN, X.B., ZHANG, J.Q., WANG, M., LI, Y.C., FEI, J.C., 2016. Reductive Clean Leaching Process of Cadmium from Hydrometallurgical Zinc Neutral Leaching Residue Using Sulfur Dioxide. J. Clean Prod. 113, 1, 910-918.
  • ZHANG, Q., WEN, S.M., FENG, Q.C., NIE, W.L., WU, D.D., 2017. Dissolution Kinetics of Hemimorphite in Methane Sulfonic Acid. Physicochem. Probl. Miner. Process. 55, 1, 1-9.
  • ZHANG, Q., WEN, S.M., WU, D.D., FENG, Q.C., LI, S., 2019. Dissolution Kinetics of Hemimorphite in Trichloroacetic Acid Solutions. J. Mater. Res. Technol. 8, 2, 1645-1652.
  • ZHONG, L., LEI, S., WANG, E., PEI, Z., LI, L., YANG, Y., 2013. Research on Removal Impurities from Vein Quartz Sand with Complexing Agents. Appl. Mech. Mater. 454, 194-199
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45e9b563-ff72-4c25-bc9f-bb55b94b892f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.