PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An advanced IoT system for monitoring and analysing chosen power quality parameters in micro-grid solution

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes an advanced Internet of Things (IoT) system for measuring, monitoring, and recording some power quality (PQ) parameters. The proposed systemis designed and developed for both hardware and software. For the hardware unit, three PZEM-004T modules with non-invasive current transformer (CT) sensors are used tomeasure the PQ parameters and an Arduino WeMos D1 R1 ESP8266 microcontroller isused to receive data from the sensors and send this data to the server via the internet. For the software unit, an algorithm using Matlab software is developed to send measurement datato the ThingSpeak cloud. The proposed system can monitor and analyse the PQ parameters including frequency, root mean square (RMS) voltage, RMS current, active power, and the power factor of a low-voltage load in real-time. These PQ parameters can be stored on theThingSpeak cloud during the monitoring period; hence the standard deviation in statistics of the voltage and frequency is applied to analyse and evaluate PQ at the monitoring point.The experimental tests are carried out on low-voltage networks 380/220 V. The obtained results show that the proposed system can be usefully applied for monitoring and analysing chosen PQ parameters in micro-grid solutions.
Rocznik
Strony
173--188
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Faculty of Engineering and Technology, Quy Nhon University, Vietnam
autor
  • Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, Vietnam
  • Faculty of Engineering and Technology, Quy Nhon University, Vietnam
  • Faculty of Engineering and Technology, Quy Nhon University, Vietnam
Bibliografia
  • 1] Luo A., Xu Q., Ma F., Chen., Overview of power quality analysis and control technology for the smart grid, Journal of Modern Power Systems and Clean Energy, vol. 4, no. 1, pp. 1–9 (2016).
  • [2] Szulborski M., Kolimas L., Łapczyński S., Szczęśniak P., Single phase UPS systems loaded with nonlinear circuits: analysis of topology in the context of electric power quality, Archives of Electrical Engineering, vol. 68, no. 4, pp. 787–802 (2019).
  • [3] Wenge C., Guo H., Roehrig C., Measurement-based harmonic current modeling of mobile storage for power quality study in the distribution system, Archives of Electrical Engineering, vol. 66, no. 4,pp. 801–814 (2017).
  • [4] Mendes T. M., Faria E. R. S., Perle L. A. V., Ribeiro E. G., Ferreira D. D., Barbosa B. H. G., Duque C. A., Detection of Power Quality Disturbance using a Multidimensional Approach in an Embedded System,IEEE Latin America Transactions, vol. 17, no. 7, pp. 1102–1108 (2019).
  • [5] Khoa N. M., Dai L. V., Detection and Classification of Power Quality Disturbances in Power System Using Modified-Combination between the Stockwell Transform and Decision Tree Methods, Energies, vol. 13, no. 14, 3623 (2020).
  • [6] Bagdadee A. H., Zhang L., A Review of the Smart Grid Concept for Electrical Power System, International Journal of Energy Optimization and Engineering, vol. 8, no. 4 (2019).
  • [7] Alavi S. A., Rahimian A., Mehran K., Ardestani J. M., An IoT-based data collection platform for situ-ational awareness-centric microgrids, in 2018 IEEE Canadian conference on electrical and computer engineering, Quebec City, Canada, pp. 13–16 (2018).
  • [8] Bagdadee A. H., Zhang L., Remus Md. S. H., A Brief Review of the IoT-Based Energy Management System in the Smart Industry, Advances in Intelligent Systems and Computing, Springer (2020).
  • [9] Bagdadee A. H., Hoque Md. Z., Zhang L., IoT Based Wireless Sensor Network for Power Quality Control in Smart Grid, Procedia Computer Science, Procedia Computer Science, Elsevier, vol. 167,pp. 1148–1160 (2020).
  • [10] Henschke M., Wei X., Zhang X., Data Visualization for Wireless Sensor Networks Using Things Board, in 29th Wireless and Optical Communications Conference, Newark, NJ, USA (2020).
  • [11] Benzi F., Anglani N., Bassi E., Frosini L., Electricity Smart Meters Interfacing the Households, IEEETransactions on Industrial Electronics, vol. 58, no. 10, pp. 4487–4494 (2011).
  • [12] Chooruang K., Meekul K., Design of an IoT Energy Monitoring System, in 2018 16th International Conference on ICT and Knowledge Engineering (ICT&KE), Bangkok, Thailand (2018).
  • [13] Luan H., Leng J., Design of energy monitoring system based on IoT, in 2016 Chinese Control and Decision Conference, Yinchuan, China (2016).
  • [14] Ku T.Y., Park W.K., Choi H., IoT Energy Management Platform for Micro-grid, in 2017 IEEE 7th International Conference on Power and Energy Systems, Toronto, Canada (2017).
  • [15] Marinakis V., Doukas H., An Advanced IoT-based System for Intelligent Energy Management in Buildings, Sensors, vol. 18, no. 1 (2018), DOI: 10.3390/s18020610.
  • [16] Kulkarni N., Lalitha S. V. N. L., Deokar S .A., Real time control and monitoring of grid power systems using cloud computing, International Journal of Electrical and Computer Engineering, vol. 9, no. 2, pp. 2088–8708 (2019).
  • [17] Priyadharshini S.G., Subramani C., Preetha Roselyn J., An IoT based smart metering development for energy management system, International Journal of Electrical and Computer Engineering, vol. 9, no. 4, pp. 3041–3050 (2019).
  • [18] Khoa N. M., Dai L. V., Tung D. D., Toan N. A., An IoT-Based Power Control and Monitoring Systemfor Low-Voltage Distribution Networks, TNU Journal of Science and Technology, vol. 225, no. 13, pp. 51–58 (2020).
  • [19] Yang T. Y., Yang C. S., Sung T. W., An Intelligent Energy Management Scheme with Monitoring and Scheduling Approach for IoT Applications in Smart Home, in 2015 Third International Conference on Robot, Vision and Signal Processing, Kaohsiung, Taiwan, pp. 18–20 (2015).
  • [20] Dai L. V., Khoa N. M., Quyen L. C., An Innovatory Method Based on Continuation Power Flow to Analyze Power System Voltage Stability with Distributed Generation Penetration, Complexity, vol. 2020, p. 8037837 (2020).
  • [21] Mnati M. J., Bossche A. V., Chisab R .F., Smart Voltage and Current Monitoring System for Three Phase Inverters Using an Android Smartphone Application, Sensors, vol. 872, no. 16 (2017), DOI: 10.3390/s17040872.
  • [22] Han D. M., Lim J. H., Design and implementation of smart home energy management systems basedon ZigBee, IEEE Transactions on Consumer Electronics, vol. 56, no. 3, pp. 1417–1425 (2010).
  • [23] Velazquez L. M., Troncoso R. J. R., Ruiz G. H., Sotelo D. M., Rios R. A. O., Smart sensor network for power quality monitoring in electrical installations, Measurement, vol. 103, pp. 133–142 (2017).
  • [24] Nallagownden P., Ramasamy H., Development of real-time industrial energy monitoring system with PQ analysis based on IoT, in 4th IET Clean Energy and Technology Conference, Kuala Lumpur,Malaysia (2016).
  • [25] Shamshiri M., Gan C. K., Baharin K. A., Azman M. A. M., IoT-based electricity energy monitoring system at Universiti Teknikal Malaysia Melaka, Bulletin of Electrical Engineering and Informatics,vol. 8, no. 2, pp. 683–689 (2019).
  • [26] Mroczka J., Szmajda M., Górecki K., Gabor Transform, SPWVD, Gabor-Wigner Transform and Wavelet Transform – Tools for Power Quality Monitoring, Metrology and Measurement Systems, vol. 17, no. 3, pp. 383–396 (2010).
  • [27] Ardeleanu A. S., Ramos P. M.,Real Time PC Implementation of Power Quality Monitoring System Based on Multiharmonic Least-Squares Fitting, Metrology and Measurement Systems, vol. 18, no. 4, pp. 543–554 (2011).
  • [28] Khan M.A., Hayes B., PTP-based time synchronisation of smart meter data for state estimation in power distribution networks, IET Smart Grid (2020).
  • 29] Khwanrit R., Kittipiyakuly S., Kudtongngamz J., Fujita H., Accuracy Comparison of Present Low-cost Current Sensors for Building Energy Monitoring, 2018 International Conference on Embedded Systems and Intelligent Technology and International Conference on Information and CommunicationTechnology for Embedded Systems (ICESIT-ICICTES), Khon Kaen, Thailand (2018).
  • [30] Olehs, Arduino communication library for peacefair pzem-004t energy monitor, https://github.com/olehs/PZEM004T, accessed 2016.
  • [31] Legarreta A. E., Figueroa J. H., Bortolin J. A., An IEC 61000-4-30 class a – Power quality monitor: Development and performance analysis, in 11th International Conference on Electrical Power Qualityand Utilisation, Lisbon, Portugal (2011).
  • [32] Markiewicz H., Klajn A.,Voltage Disturbances: Standard EN 50160 – Voltage Characteristics in Public Distribution Systems, IEE Endorsed Provider (2004).
  • [33] Hassani H., Ghodsi M., Howell G., A note on standard deviation and standard error, International Journal of the IMA: Teaching Mathematics and Its Applications, vol. 29, no. 2, pp. 108–112 (2010).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45e993b7-70d6-44ca-9413-c0da2b0ea6db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.