PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal feed temperature for hydrogen peroxide decomposition process occurring in a bioreactor with fixed-bed of commercial catalase: a case study on thermal deactivation of the enzyme

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
On the basis of hydrogen peroxide decomposition process occurring in the bioreactor with fixed-bed of commercial catalase the optimal feed temperature was determined. This feed temperature was obtained by maximizing the time-average substrate conversion under constant feed flow rate and temperature constraints. In calculations, convection-diffusion-reaction immobilized enzyme fixed-bed bioreactor described by a coupled mass and energy balances as well as general kinetic equation for rate of enzyme deactivation was taken into consideration. This model is based on kinetic, hydrodynamic and mass-transfer parameters estimated in earlier work. The simulation showed that in the biotransformation with thermal deactivation of catalase optimal feed temperature is only affected by kinetic parameters for enzyme deactivation and decreases with increasing value of activation energy for deactivation. When catalase undergoes parallel deactivation the optimal feed temperature is strongly dependent on hydrogen peroxide feed concentration, feed flow rate and diffusional resistances expressed by biocatalyst effectiveness factor. It has been shown that the more significant diffusional resistances and the higher hydrogen peroxide conversions, the higher the optimal feed temperature is expected.
Rocznik
Strony
491–--501
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • UTP University of Science and Technology, Faculty of Chemical Technology and Engineering, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland
Bibliografia
  • 1. Chilton T.H., Colburn A.P., 1934. Mass transfer (absorption) coefficients predictions from data on heat transfer and fluid friction. Ind. Eng. Chem., 26, 1183–1187. DOI: 10.1021/ie50299a012.
  • 2. Costa S.A., Tzanov T., Carneiro F., Gubitz G.M., Cavaco-Paulo A., 2002. Recycling of textile bleaching effluents for dyeing using immobilized catalase. Biotechnol. Lett., 24, 173–176. DOI: 10.1023/a:1014136703369.
  • 3. Dixon A.G., Cresswell D.L., 1979. Theoretical prediction of effective heat transfer parameters in packed beds. AIChE J., 25, 663–676. DOI: 10.1002/aic.690250413.
  • 4. Farkye N.Y., 2004. Cheese technology. Int. J. Dairy Technol., 57, 91–98. DOI: 10.1111/j.1471-0307.2004.00146.x.
  • 5. Grubecki I., 2018. Optimal feed temperature for an immobilized enzyme fixed-bed bioreactor: A case study on hydrogen peroxide decomposition by commercial catalase. Chem. Process Eng., 39, 39–57. DOI: 10.24425/119098.
  • 6. Grubecki I., 2017. External mass transfer model for hydrogen peroxide decomposition by Terminox Ultra catalase in a packed-bed reactor. Chem. Process Eng., 38, 307–319. DOI: 10.1515/cpe-2017-0024.
  • 7. Horst F., Rueda E.H., Ferreira M.L., 2006. Activity of magnetite-immobilized catalase in hydrogen peroxide decomposition. Enzyme Microb. Technol., 38, 1005–1012. DOI: 10.1016/j.enzmictec.2005.08.035.
  • 8. Illanes A. (Eds.), 2013. Enzyme reactor design and operation under mass-transfer limitations, In: Problem solving in enzyme biocatalysis. John Wiley and Sons Ltd, 181–202.
  • 9. Katsaros G.I., Katapodis P., Taoukis P.S., 2009a. High hydrostatic pressure inactivation kinetics of the plant proteases ficin and papain. J. Food Eng., 91, 42–48. DOI: 10.1016/j.jfoodeng.2008.08.002.
  • 10. Katsaros G.I., Katapodis P., Taoukis P.S., 2009b. Modeling the effect of temperature and high hydrostatic pressure on the proteolytic activity of kiwi fruit juice. J. Food Eng., 94, 40–45. DOI: 10.1016/j.jfoodeng.2009.02.026.
  • 11. Maria G., 2012. Enzymatic reactor selection and derivation of the optimal operation policy, by using a model-based modular simulation platform. Comput. Chem. Eng., 36, 325–341. DOI: 10.1016/j.compchemeng.2011.06.006.
  • 12. Maria G., Crisan M., 2015. Evaluation of optimal operation alternatives of reactors used for d-glucose oxidation in a bi-enzymatic system with a complex deactivation kinetics. Asia-Pac. J. Chem. Eng., 10, 22–44. DOI: 10.1002/apj.1825.
  • 13. Miłek J., Wójcik M., Verschelde W., 2014. Thermal stability for the effective use of commercial catalase. Polish J. Chem. Technol., 16, 75–79. DOI: 10.2478/pjct-2014-0073.
  • 14. Mohapatra B.R., Douglas Gould W., Dinardo O., Papavinasam S., Koren D.W., Winston Revie R., 2007. Effect of immobilization on kinetic and thermodynamic characteristics of sulfide oxidase from arthrobacter species. Prep. Biochem. Biotechnol., 38, 61–73. DOI: 10.1080/10826060701774361.
  • 15. Naidu G.S.N., Panda T., 2003. Studies on pH and thermal deactivation of pectolytic enzymes from Aspergillus niger. Biochem. Eng. J., 16, 57–67. DOI: 10.1016/S1369-703X(03)00022-6.
  • 16. Ogura Y., 1955. Catalase activity at high concentration of hydrogen peroxide. Arch. Biochem. Biophys., 57, 288–300. DOI: 10.1016/0003-9861(55)90291-5.
  • 17. Ricca E., Calabro, V., Curcio S., Iorio G., 2009. Optimization of inulin hydrolysis by inulinase accounting for enzyme time- and temperature-dependent deactivation. Biochem. Eng. J., 48, 81–86. DOI: 10.1016/j.bej.2009. 08.009.
  • 18. Shao-Wei D., Da-Nian L., 2008. Kinetics of the thermal inactivation of Bacillus subtilis a-amylase and its application on the desizing of cotton fabrics. J. Appl. Polym. Sci., 109, 3733–3738. DOI: 10.1002/app.28612.
  • 19. Soares J.C., Moreira P.R., Queiroga A.C., Morgado J., Malcata F.X., Pintado M.E., 2011. Application of immobilized enzyme technologies for the textile industry: A review. Biocatal. Biotransform., 29, 223–237. DOI: 10.3109/10242422.2011.635301.
  • 20. Vasudevan P.T.,Weiland R.H., 1990. Deactivation of catalase by hydrogen peroxide. Biotechnol. Bioeng., 36, 783– 789. DOI: 10.1002/bit.260360805.
  • 21. Wilińska A., de Figueiredo Rodrigues A.S., Bryjak J., Polaković M., 2008. Thermal inactivation of exogenous pectin methylesterase in apple and cloudberry juices. J. Food Eng., 85, 459–465. DOI: 10.1016/j.jfoodeng.2007. 08.009.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45e78a9e-2d94-4b58-896d-9626924c61f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.