PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chemical synthesis by precipitation of zinc oxide for boimedical application

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the study is the chemical synthesis of ZnO powders, from ZnCl2 and NaOH solutions according to an appropriate procedure. The powders (a) and (b) obtained underwent various characterizations such as: optical microscopy, SEM, UV, BET, IR, XRD and antimicrobial activity. The results showed the inhomogeneous distribution, the nanometric size, the absorbance at 353 and 346 nm and the specific surface of 25.701 and 30.534 cm2/g of the particles, the presence of all the characteristic bands of ZnO which was confirmed by XRD and very good bacterial sensitivity of the two ZnO powders.
Rocznik
Strony
77--87
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
  • Laboratory LEMM, Mouloud Mammeri University, Tizi Ouzou, Algeria
  • Department of Chemistry,Mouloud Mammeri University, Tizi Ouzou, Algeria
  • Department of Chemistry,Mouloud Mammeri University, Tizi Ouzou, Algeria
autor
  • Department of Chemistry,Mouloud Mammeri University, Tizi Ouzou, Algeria
  • Department of Chemistry,Mouloud Mammeri University, Tizi Ouzou, Algeria
  • Department of Chemistry,Mouloud Mammeri University, Tizi Ouzou, Algeria
autor
  • Laboratory LEMM, Mouloud Mammeri University, Tizi Ouzou, Algeria
  • Department of Chemistry,Mouloud Mammeri University, Tizi Ouzou, Algeria
Bibliografia
  • 1. Nayak S., Chaudhari A., Vaidhun B.: A review of zinc oxide nanoparticles: an evaluation of their synthesis, characterization and ameliorative properties for use in the food, pharmaceutical and cosmetic industries. Journal of Excipients and Food Chemicals 11 (2020) 79-92.
  • 2. Ahmad P., Alyemeni M.N., Al-Huqail A.A., Alqahtani M.A., Wijaya L., Ashraf, M., Kaya C., Bajguz A.: Zinc oxide nanoparticles application alleviates arsenic (As) toxicity in soybean plants by restricting the uptake of as and modulating key biochemical attributes, antioxidant enzymes, ascorbate-glutathione cycle and glyoxalase system. Plants 9(7) (2020) 825.
  • 3. Al Jabri H., Saleem M.H., Rizwan M., Hussain I., Usman K., and Alsafran M.: Zinc Oxide Nanoparticles and Their Biosynthesis: Overview. Life 12(4) (2022) 594.
  • 4. García-López J.I., Niño-Medina G., Olivares-Sáenz E., Lira-Saldivar R.H., Barriga-Castro E.D., Vázquez-Alvarado R., Rodríguez-Salinas P.A., Zavala-García F. i. in.: Foliar Application of Zinc Oxide Nanoparticles and Zinc Sulfate Boosts the Content of Bioactive Compounds in Habanero Peppers. Plants 8 (2019) 254.
  • 5. Özgür Ü., Alivov Ya. I., Liu C., Teke A., Reshchikov M. A., Doğan S., Avrutin V., Cho S.-J., and H. Morkoç H: A comprehensive review of ZnO materials and devices. Journal of Applied Physics 98 (2005) 041301.
  • 6. Segets D., Gradl J., Taylor R.K., Vassilev V., Peukert, W. i. in.: Analysis of optical absorbance spectra for the determination of ZnO nanoparticle size distribution, solubility, and surface energy. ACS Nano 3 (2009) 1703-1710.
  • 7. Lou X., Shen H.S., Shen Y.S. i. in.: Development of ZnO series ceramic semiconductor gas sensors. Journal of Sensor Transactions Technology 3 (1991) 1-5.
  • 8. Kołodziejczak-Radzimska A., Jesionowski T.: Zinc Oxide—From Synthesis to Application: A Review. Materials 7 (2014) 2833-2881.
  • 9. Bacaksiz E., Parlak M., Tomakin M., Özcelik A., Karakiz M., Altunbas M.: The effect of zinc nitrate, zinc acetate and zinc chloride precursors on investigation of structural and optical properties of ZnO thin films. Jounal of Alloys and Compounds 466 (2008) 447-450.
  • 10. Wang J., Cao J., Fang B., Lu P., Deng S.: Wang H.: Synthesis and characterization of multipod, flower-like, and shuttle-like ZnO frameworks in ionic liquids. Materials Letters 59 (2005) 1405-1408.
  • 11. Laurenti M., Cauda V.: ZnO Nanostructures for Tissue Engineering Applications. Nanomaterials 7 (2017) 374.
  • 12. Suwanboon S., Amornpitoksuk P., Bangrak P., Muensit N: Optical, photocatalytic and bactericidal properties of Zn1-xLaxO and Zn1-xMgxO nanostructures prepared by a sol–gel method. Ceramics International 39 (2013) 5597-5608.
  • 13. Kärber E., Abass A., Khelifi S., Burgelman M., Katerski A., Krunks M: Electrical characterization of all-layers-sprayed solar cell based on ZnO nanorods and extremely thin CIS absorber. Solar Energy 91 (2013) 48-58.
  • 14. Patil J.Y., Rajgure A.V., Bagal L.K,. Pawar R.C, Mulla I.S., Suryavanshi S.S: Structural, morphological, and gas response properties of citrate gel synthesized nanocrystalline ZnO and Zn0.9Cd0.1O materials. Ceramics International 39 (2013) 4383-4390.
  • 15. Yang Q., Liu Y., Pan C., Chen J., Wen X., Wang Z.L: Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet lightemitting diode by piezo-phototronic effect. Nano Letters 13 (2013) 607-613.
  • 16. Moezzi A., McDonagh A.M., Cortie M.B: Zinc oxide particles: synthesis, properties and applications. Chemical Engineering Journal 185-186 (2012) 1-22.
  • 17. Kiomarsipour N., Shoja Razavi R., Ghani K., Kioumarsipour M.: Evaluation of shape and size effects on optical properties of ZnO pigment. Applied Surface Science 270 (2013) 33-38.
  • 18. Newman M.D., Stotland M., Ellis J.I: The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens. Journal of the American Academy of Dermatology 61 (2009) 685-692.
  • 19. Khan I., Saeed K., Khan I.: Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry 12 (2019) 908-931.
  • 20. Khatami M., Alijani H.Q., Heli H., Sharifi I: Rectangular shaped zinc oxide nanoparticles: Green synthesis by Stevia and its biomedical efficiency. Ceramics International 44 (2018) 15596–15602.
  • 21. Naseer M., Aslam U., Khalid B., Chen B: Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Scientific Report 10 (2020) 9055.
  • 22. Darshita M.N., Sood R. i. in.: Review on synthesis and applications of zinc oxide nanoparticles. Preprints (2021) 2021050688.
  • 23. Mahmoud, A.W.M.; Abdeldaym, E.A.; Abdelaziz, S.M.; El-Sawy, M.B.I.; Mottaleb, S.A.: Synergetic Effects of Zinc, Boron, Silicon, and Zeolite Nanoparticles on Confer Tolerance in Potato Plants Subjected to Salinity. Agronomy 10 (2020) 19.
  • 24. Aisida S.O., Batool A., Khan F.M., Rahman L., Mahmood A., Ahmad I., Zhao T.K., Maaza M., Ezema F.I: Calcination induced PEG-Ni-ZnO nanorod composite and its biomedical applications. Materials Chemistry and Physics 255 (2020) 123603.
  • 25. Huang Z., Pan C., Huang P., Si P., Wu W., Xu C., Zhou J., Li X. i. in.: Effects of ZnO nanoparticles on the microstructure, mechanical properties and wettability of polypyrrole–polydopamine nanocomposites coated on W substrate. Materials Today Communications 28 (2021) 102620.
  • 26. Islam F., Shohag S., Uddin M.J., Islam M.R., Nafady M.H., Akter A., Mitra S., Roy A., Emran T.B., Cavalu S.: Exploring the Journey of Zinc Oxide Nanoparticles (ZnO-NPs) toward Biomedical Applications. Materials 15 (2022) 2160.
  • 27. Mishra P.K., Mishra H., Ekielski A., Talegaonkar S., Vaidya B: Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discovery Today 22 (2017) 1825-1834.
  • 28. Jiang J., Pi J., Cai J: The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic Chemistry and Applications 3 (2018) 1-18.
  • 29. Schneider S.L., Lim H.W., i. in.: A review of inorganic UV filters zinc oxide and titanium dioxide. Photodermatol Photoimmunol & Photomedicine 35 (2019) 442–446.
  • 30. Salvioni L., Morelli L., Ochoa E., Labra M., Fiandra L., Palugan L., Prosperi D., Colombo M.: The emerging role of nanotechnology in skincare. Advances in Colloid and Interface Science 293 (2021)102437.
  • 31. Smijs T.G., Pavel S: Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnology, Science and Applications 4 (2011) 95-112.
  • 32. Ruszkiewicz J.A., Pinkas A., Ferrer B., Peres T.V., Tsatsakis A., Aschner M: Neurotoxic effect of active ingredients in sunscreen products, a contemporary review. Toxicology Reports 4 (2017) 245-259.
  • 33. Kołodziejczak-Radzimska A., Jesionowski T: Zinc oxide–from synthesis to application: a review. Materials 7 (2014) 2833-2881.
  • 34. Sahoo S., Maiti M., Ganguly A., George J.J., Bhowmick A.K: Effect of zinc oxide nanoparticles as cure activator on the properties of natural rubber and nitrile rubber. Journal of Applied Polymer Science 105 (2007) 2407-2415.
  • 35. Hatamie A., Khan A., Golabi M., Turner A. P.F., Beni V., Mak W.C., Sadollahkhani A., Alnoor H., Zargar B., Bano S., Nur O., Willander M: Zinc oxide nanostructure-modified textile and its application to biosensing, photocatalysis, and as antibacterial material. Langmuir 31, 39 (2015) 10913-10921.
  • 36. Lesueur D., Serra D., Bighelli A., Hoi T.M., Ban N.K., Thai T.H., Casanova J: Chemical composition and antibacterial activity of essential oil of Michelia faveolata Meryll ex Dandy from Vietnam. Flavour and Fragrance Journal 22 (2007) 317-321.
  • 37. Moreira M.R., Ponce A.G., Del Valle C.E., Roura S.I: Inhibitory parameters of essential oils to reduce a foodborne pathogen. Leaving Water Temperature 38 (2005) 565-570.
  • 38. Monson P.A.: Understanding adsorption/desorption hysteresis for fluids in mesoporous materials using simple molecular models and classical density functional theory. Microporous and Mesoporous Materials 160 (2012) 47- 66.
  • 39. Schlumberger C., Thommes M.: Characterization of Hierarchically Ordered Porous Materials by Physisorption and Mercury Porosimetry—A Tutorial Review. Advanced Materials Interfaces 8 (2021) 002181.
  • 40. Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 87 (2015) 1051-1069.
  • 41. Schneider S.L., Lim H.W.: A review of inorganic UV filters zinc oxide and titanium dioxide. Photodermatol Photoimmunol Photomed 35 (2019) 442–446.
  • 42. Salvioni L., Morelli L., Ochoa E., Labra M., FiandraL., Palugan L., Prosperi D., Colombo M.: The emerging role of nanotechnology in skincare. Advances in Colloid and Interface Science 293 (2021) 102437.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45e6a08e-9d52-4ba3-9ce1-ccb354f79609
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.