Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article presents a analysis of the impact of varying amounts of a specific additive in the core mixture and adjustments in shooting pressure on the elimination of surface defects in castings, particularly veinings. These defects, often located in inaccessible areas of the casting, cannot be effectively removed through conventional methods like punching, making the optimization of the core mixture composition crucial. Additives are frequently incorporated into the core mixture, as they have become an essential component in its production. For the core mixture to be effective, it is not only essential to identify the appropriate type of additive but also to precisely determine the optimal quantity of the additive and accurately set other critical production parameters, such as shooting pressure. This study investigates the influence of additive concentration and shooting pressure on the surface quality of cast iron castings, employing the cold box method for core production. The findings reveal that higher shooting pressure contributes positively to the reduction of veining defects. However, an increased additive content in the core mixture does not necessarily ensure vein-free castings. The additive also plays a role in reducing the gas content within the core, and increased core hardness is associated with a decrease in the occurrence of veining defects. The casting with the highest surface quality and the fewest veinings was produced using cores made from a mixture with 1% additive content, subjected to a shooting pressure of 4 bars.
Czasopismo
Rocznik
Tom
Strony
129--135
Opis fizyczny
Bibliogr. 30 poz., il., tab., wykr.
Twórcy
autor
- Technical University of Košice Faculty of Materials, Metallurgy and Recycling, Slovak Republik
autor
- Technical University of Košice Faculty of Materials, Metallurgy and Recycling, Slovak Republik
autor
- Technical University of Košice Faculty of Materials, Metallurgy and Recycling, Slovak Republik
Bibliografia
- [1] Hrubovčáková, M., Vasková, I. & Conev, M. (2018). Using additives of the production of castings from the gray cast iron. Manufacturing Technology. 18(6), 906-911. DOI: 10.21062/ujep/199.2018/a/1213-2489/MT/18/6/906.
- [2] Svidró, J.T., Diószegi, A., Svidró, J. & Ferenczi, T. (2017). The effect of different binder levels on the heat absorption capacity of moulding mixtures made by the phenolic urethane cold-box process. Journal of thermal analysis and calorimetry. 13(3), 1769-1777. DOI: 10.1007/s10973-017-6611-y.
- [3] Hrubovčáková, M., Vasková, I. & Conev, M. (2017). Influence the composition of the core mixture to the occurence of veinings on castings of cores produced by cold-box-amine technology. Manufacturing Technology. 17(1), 39-44.
- [4] Neudert, A. (2019). Molding and core mixtures. Formovací a jádrové směsi. Slévárenství. 67, 217. (in Czech).
- [5] Żymankowska-Kumon, S., Bobrowski, A., Drożyński, D., Grabowska, B. & Kaczmarska, K. (2018). Effect of silicate modifier on the emission of harmful compounds from phenolic resin used in cold-box technology. Archives of Foundry Enginnering. 18(1), 151-156. DOI: 10.24425/118829.
- [6] Zanetti, M.Ch. &Fiore, S. (2002). Foundry processes: the recovery of green moulding sands for core operations. Resources Conservation and Recycling. 38(3), 243-254. https://doi.org/10.1016/S0921-3449(02)00154-4.
- [7] ASK Chemicals (2020,September). Cold box PU Technology. Retrived September 4, 2020, from https://www.askchemicals.com/foundry-products/products/pu-cold-box-binder/cold-box-process.
- [8] Jelínek, P.(1996). Slévarenské formovací směsi II část, Pojivové soustavy formovacích směsí (pp. 24-29). Ostrava.
- [9] Udayan, N., Srinivasan, M.V., Vaira Vignesh, R. & Govindaraju, M. (2021). Elimination of casting defect sinduced by cold box cores. Materials Today: Proceedings. 46(10), 5022-5026. https://doi.org/10.1016/j.matpr.2020.10.398.
- [10] Li, C., Ma, Z., Zhang, X., Fan, H., &Wan, J. (2016).Silicone-modified phenolic resin: Relashion ships between molecular structure and curing behaviour. Thermochemical Acta. 639, 53-65. https://doi.org/10.1016/j.tca.2016.07.011.
- [11] Kroker, J. & Wang, X. (2014). Advancement in cold box processes. In 7st BILBAO 2014 World Foundry Congress, 19-21 May 2014. Palacio Euskalduna, BILBAO: Advanced Suistanable Foundry.
- [12] Jelínek, P. (2000). Dispersion systems of foundry molding compounds: cutting edge. Ostrava. (in Czech).
- [13] Beňo, J., Adamusová, K., Merta, V. & Bajer, T. (2019). Influence of silica sand on surface casting quality. Archives of Foundry Engineering.19(2), 5-8. DOI:10.24425/afe.2019.127107.
- [14] Hlavsa, P. (2016). Core-melt interaction during casting of Al alloy cylinder heads into metal molds. Published doctoral dissertation, Vysoké učenítechnické v Brňe. Fakulta strojního inženýrství, Brno, Czech Republic. (in Czech).
- [15] Svidró, J., Diószegi, A., Tóth, L. & Svidró, J.T. (2017). The influence of thermal expansion of un bonded foundry sands on the deformation of resin bonded cores. Archives of Metallurgy and Materials.62(2), 795-798. DOI:10.1515/amm-2017-0118.
- [16] Baker, S.G. & Werling, J.M. (2003). Expansion control method for sand cores. In Transactions of the American Foundry Society and the One Hundred Seventh Annual Castings Congress (pp. 457-462).
- [17] Thiel, J. & Ravi, S. (2014). Cause sand solutions to veining defects in iron and steel castings. AFS Transaction. 14-030,1-16.
- [18] Beňo, Jet. Al. (2016). Influencing of foundry bentonite mixtures by binder activation. Metalurgija. 55 (1), 7-10.
- [19] Sheikh, M.I.A.R., Wahulkar, R.R., Gatkine, H.S., Sonwane, R.P., Wakodikar, S.R. & Patankar, V.(2018). Sand optimization to improve quality of cast iron pipes. International Journal of Innovations in Engineering and Science. 3(5), 89-93.e-ISSN: 2456-3463.
- [20] Elbel, T. &kol. (1992). Casting defects from iron alloys. MATECS, Brno.(in Czech).
- [21] Hrubovčáková, M., Vasková, I., Conev, M. & Bartošová, M .(2017). Influence the compostition of the core mixture to the occurrence of veining on casting of cores produced by cold-box-amine technology. Manufacturing Technology.17(1), 3 9-44. DOI:10.21062/ujep/x.2017/a/1213-2489/MT/17/1/39.
- [22] Hrubovčáková M.(2023). Analysis and action of additives in the nuclear mixture. Reasons for use and analysis of additives in molding compounds (41-56). Košice: Fakulta materiálov, metalurgie a recyklácie, Technická univerzita v Košiciach. (in Slovac).
- [23] Abdulamer, D. (2023). Impact of the different moulding parameters on properties of the green sand mould. Archives of Foundry Engineering. 23(2), 5-9. DOI:10.24425/afe.2023.144288.
- [24] Khandelwal, H. (2014). Effect of binder composition on the shrinkage of chemically bonded sand cores. Materials and Manufacturing Processes.30(12), 1465-1470. https://doi.org/10.1080/10426914.2014.994779.
- [25] Chate, G.R., Bhat, R.P. & Chate, U.N. (2014). Process parameter settings for core shooter machine by taguchi approach. Procedia Materials Science.5,1976-1985. DOI:10.1016/j.mspro.2014.07.530.
- [26] Showman, R., Nocera, M., Madigan, J., Baltz, G., Hajduk, T. & Wohleber, J. (2010). Re-Evaluating core dimensional changes. International Journal of Metalcasting.4, 63-74. https://doi.org/10.1007/BF03355498.
- [27] Mahajan, N., Jadhav G.K. & Jadhav, R. (2018). Optimization of sand preparation to improve core strenght and casting quality. International Journal for Technological Research in Egineering. 6(2), 4808-4811.
- [28] Bolibruchová, D. (2010). Foundry technology.(in Slovac).
- [29] HAGroup. (2020). New Names-Proven Products. Retrieved June20, 2024 from https://www.ha-group.com/fileadmin/redaktion_contentpool/3_Products_and_Services/Cold-Box/2020_Cold-Box_Brochure_e.pdf
- [30] Shahria, S., Tariquzzaman, Md., Habibur Rahman, Md., Al Almi, Md. & Abdur Rahman, Md. (2017). Optimization of molding sand composition for casting al alloy. International Journal of Mechanical Engineering and Applications. 5(3), 155-161. DOI: 10.11648/j.ijmea.20170503.13.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45ddfab4-3121-45c0-9bcc-a90489faa14d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.