PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and mechanical properties of Titanium grade 23 produced by selective laser melting

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Selective laser melted Titanium grade 23 was characterized by low porosity, relatively large surface roughness and pronounced surface texture (i.e. surface grooves orientation). The band/layer microstructure was built of mixed α and β phases. The as printed structure exhibited very high compressive residual stresses with strong anisotropy (i.e., − 512 ± 17 MPa and − 282 ± 14 MPa along the laser scanning direction and along the transverse direction, respectively) and strong fiber crystallographic texture. The latter one is responsible for the anisotropy of hardness in the material. Annealing at 600 °C during four hours significantly removed residual stresses (i.e. to − 14 ± 2.8 MPa) and slightly weakened the texture. Yield strength, 1120 ± 50 MPa, and ultimate tensile strength, 1210 ± 50 MPa, of the annealed material are significantly higher and tensile elongation, 3.9%, lower than for commercial Titanium grade 23. Final mechanical polishing to obtain flat and relatively smooth surface induced desired compression residual stress in the subsurface (i.e., equal to about − 90 MPa). Low absorbed gas contents (oxygen, nitrogen, hydrogen) and low porosity of the printed material indicates the correctness of the technology and allows the printed material to be classified as meeting the requirements of ASTM standards for Titanium grade 23. Besides traditional testing techniques, the optical profilometry, X-ray analysis (texture and residual stresses measurement) and infrared absorption method were applied for the product characterization and some potential of these testing methods and usefulness in technological practice was discussed, what can be particularly interesting both to practitioners from industry and researches from scientific laboratories.
Rocznik
Strony
294--309
Opis fizyczny
Bibliogr. 87 poz., rys., wykr.
Twórcy
autor
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
  • Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
  • Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
  • Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] Eylon D, Fujishiro S, Postans PJ, Froes FH. High temperaturę titanium alloys-a review. JOM. 1984;36:55–62. https://doi.org/10.1007/BF03338617.
  • [2] Wohlers TT, Early Research & Development in Rapid Prototyping, Tooling & Manufacturing State of the Industry, Wohlers report; 2005.
  • [3] Vrancken B, Thijs L, Kruth JP, Van Humbeeck J. Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties. J Alloys Compd. 2012;541:177–85. https://doi.org/10.1016/j.jallcom.2012.07.022.
  • [4] Facchini L, Magalini E, Robotti P, Molinari A, Hoges S, Wissenbach K. Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders. Rapid Prototyp J. 2010;16:450–9. https://doi.org/10.1108/13552541011083371.
  • [5] Facchini L, Magalini E, Robotti P, Molinari A. Microstructure and mechanical properties of Ti-6Al-4V produced by electron beam melting of pre-alloyed powders. Rapid Prototyp J. 2009;15:171–8. https://doi.org/10.1108/13552540910960262.
  • [6] Thijs L, Verhaeghe F, Craeghs T, Van Humbeeck J, Kruth JP. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 2010;58:3303–12. https://doi.org/10.1016/j.actamat.2010.02.004.
  • [7] ASTM C20-00, Standard test methods for apparent porosity, water absorption, apparent specific gravity, and bulk density of burned refractory brick and shapes by boiling water. 2015.
  • [8] ASTM C134-95, Standard test methods for size, dimensional measurements, and bulk density of refractory brick and insulating firebrick. 2016.
  • [9] ISO 5016, Shaped insulating refractory products – Determination of bulk density and true porosity. 1997.
  • [10] ISO 5017, Dense shaped refractory products – Determination of bulk density, apparent porosity and true porosity. 2013.
  • [11] Morgan R, Sutclife CJ, O’Neil W. Density analysis of direct metal laser re-melted 316L stainless steel cubic primitives. J Mater Sci. 2004;39:1195–205. https://doi.org/10.1023/B:JMSC.0000013875. 62536.fa.
  • [12] Le Bail A, Duroy H, Fourquet JL. Ab-Initio structure determination of LiSbWO 6 by X-ray powder diffraction. Mater Res Bull. 1988;23:447–52. https://doi.org/10.1016/0025-5408(88)90019-0.
  • [13] Smith GS, Snyder RL. A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing. J Appl Cryst. 1979;12:60–5. https://doi.org/10.1107/S002188987901178X.
  • [14] Werner PE, Erikson L, Westdahl M. TREOR, A semi-exhaustive trial-and-error powder indexing program for all symmetries. J Appl Cryst. 1985;18:367–70. https://doi.org/10.1107/S0021889885010512.
  • [15] Boultif A, Louer D. Powder pattern indexing with the dichotomy method. J Appl Cryst. 2004;37:724–31. https://doi.org/10.1107/S0021889804014876.
  • [16] Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Cryst. 1969;2:65–71. https://doi.org/10.1107/S0021889869006558.
  • [17] Williamson GK, Hall WH. X-ray line broadening from filed aluminium and wolfram. Acta Met. 1953;1:22–31. https://doi.org/10.1016/0001-6160(53)90006-6.
  • [18] Gazzara CP. The measurement of residual stress with X-ray diffraction, Report No. MS 83–1, US Army Materials and Mechanics Research Center. Watertown, Massachusetts. 1983.
  • [19] Schulz LG. A direct method of determining preferred orientation of a flat reflection sample using a Geiger counter X-ray spectrometer. J Appl Phys. 1949;20:1030–3. https://doi.org/10.1063/1.1698268.
  • [20] Matthies S. On the reproducibility of the orientation distribution function of texture samples from pole figures (Ghost phenomena). Phys Stat Sol. 1979;92b:135–8. https://doi.org/10.1002/pssb.2220920254.
  • [21] Tarasiuk J, Wierzbanowski K, Baczmański A. New algorithm of direct method of texture analysis. Cryst Res Technol. 1998;33:101–18.
  • [22] ASTM E8, Standard test methods for tension testing of metallic materials. 2009.
  • [23] ASTM E92, Standard test method for Vickers hardness of metallic materials. 2003.
  • [24] ASTM E2546, Standard practice for instrumented indentation testing. 2015.
  • [25] ISO 14577, Metallic materials- Instrumented indentation test for hardness and materials parameters. 2015.
  • [26] LaserForm Ti Gr23(A); https://www.3dsystems.com/sites/default/files/2020-08/3d-systems-laserform-ti-gr23%28a%29-datasheet-us-a4-2020-06-16-a-print.pdf. Accessed 07 Apr 2021.
  • [27] Grade 23 Ti 6Al 4V ELI Alloy (UNS R56401). 2013. http://www.azom.com/article.aspx?ArticleID=9365 . Accessed 7 Apr 2021.
  • [28] Kasperovich G, Haubrich J, Gussone J, Requena G. Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Mater Des. 2016;105:160–70. https://doi.org/10.1016/j.matdes.2016.05.070.
  • [29] Lewandowski JJ, Seifi M. Metal additive manufacturing: a review of mechanical properties. Annu Rev Mater Res. 2016;46:151–86. https://doi.org/10.1146/annurev-matsci-070115-032024.
  • [30] Moszybrocka J, Gapiński B, Dworak M, Skrablak G, Stwora A. The manufacturability and compression properties of the Schwarz Diamond type Ti6Al4V cellular lattice fabricated by selective laser melting. Int J Adv Manuf Technol. 2019;105:3411–25. https://doi.org/10.1007/s00170-019-04422-6.
  • [31] Kelly SM, Kampe SL. Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: part II. Thermal modelling Metall Mater Trans A. 2004;35:1869–79. https://doi.org/10.1007/s11661-004-0095-7.
  • [32] Neikter M, Akerfeld P, Pederson R, Antti ML, Sandell V. Microstructural characterization and comparison of Ti-6Al-4V manufactured with different additive manufacturing processes. Mater Charact. 2018;143:68–75. https://doi.org/10.1016/j.matchar.2018.02.003.
  • [33] Pederson R: Microstructure and phase transformation of Ti-6Al-4V, Doctoral Thesis. Luleå University of Technology; 2002.
  • [34] Wang F, Williams S, Colegrove P, Antonysamy AA. Microstructure and mechanical properties of wire and Arc additive manufactured Ti-6Al-4V. Metall Mater Trans A. 2013;44A:968–77. https://doi.org/10.1007/s11661-012-1444-6.
  • [35] Filip R, Kubiak K, Ziaja W, Sieniawski J. The effect of microstructure on the mechanical properties of two-phase titanium alloys. J Mater Process Technol. 2003;133:84–9. https://doi.org/10.1016/S0924-0136(02)00248-0.
  • [36] Pederson R, Babushin O, Skystedt F, Waren R. Use of high temperature x-ray diffractometry to study phase transitions and thermal expansion properties in Ti-6Al-4V. Mater Sci Tech-Lond. 2003;19:1533–8. https://doi.org/10.1179/026708303225008013.
  • [37] Fast JD. Crack-free forming of zirconium and titanium. Metall-wirtschaft. 1938;17:459–66.
  • [38] Ehrlich P. Phasenverhältnisse und magnetisches Verhalten im System Titan-Sauerstoff. Z Electrochem. 1939;45:362–70.
  • [39] Ehrlich P. Lösungen von Sauerstoff in metallischem Titan. Z Anorg Chem. 1941;247:53–64. https://doi.org/10.1002/zaac.19412470106.
  • [40] Ogden HR, Jaffe RL. The effects of carbon, oxygen, and nitrogen on the mechanical properties of titanium and titanium alloys. TML Report No. 20, Titanium Metallurgical Laboratory. Battelle Memorial Institute, Columbus, Ohio; 1955.
  • [41] Montanari R, Costana G, Tata ME, Testani C. Lattice expansion of Ti–6Al–4V by nitrogen and oxygen absorption. Mater Charact. 2008;59:334–7. https://doi.org/10.1016/j.matchar.2006.12.014.
  • [42] ASTM 348, Standard Specification for Titanium and Titanium Alloy Bars and Billets.
  • [43] ASTM F136, Standard Specification for Wrought Titanium -6Alu-minum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401).
  • [44] Ti6Al4V ELI Titanium Alloy; Arcam EBM system; https://www.cbmwales.co.uk/wp-content/uploads/2015/05/Arcam-Ti6Al4V-ELI-Titanium-Alloy.pdf; Accessed 07 Apr 2021.
  • [45] Kazantseva N, Krakhmalev P, Yadroitsev I, Fefelov A, Merkushev A, Ilyinkh M, Vinogradova N, Ezhov I, Kurennykh T: Effect of oxygenTand nitrogen contents on the structure of the Ti-6Al-4V alloy manufactured by selective laser melting, Proceedings III International Scientific Conference: Material Science. Nonequilibrium Phase Transformations; 2017, pp. 101–103.
  • [46] Ramsey MH, Ellison SLR (eds.): Eurachem/EUROLAB/ CITAC/Nordtest/AMC Guide: Measurement uncertainty arising from sampling: a guide to methods and approaches Eurachem, 1st ed., 2007. ISBN 978 0 948926 26 6. Available from the Eurachem secretariat.
  • [47] Nayak SK, Hung CJ, Sharma V, Alpay SP, Dongare AM, Brindley WJ, Hebert RJ. Insight into point defects and impurities in titanium from first principles. NPJ Comput Mater. 2018;4:1–10. https://doi.org/10.1038/s41524-018-0068-9.
  • [48] Tal-Gutelmacher E, Eliezer D. The hydrogen embrittlement of titanium-based alloys. JOM. 2005;57:46–9. https://doi.org/10.1007/s11837-005-0115-0.
  • [49] Covington LC: Factors Affecting the Hydrogen Embrittlement of Titanium. Paper 59, Corrosion/75, National Association of Corrosion Engineers, Toronto; April 1975.
  • [50] Covington LC. The influence of surface condition and environment on the hydriding of titanium. Corrosion. 1979;35:378–82. https://doi.org/10.5006/0010-9312-35.8.378.
  • [51] Wille GW, Davis JW: Hydrogen in Titanium Alloys. Raport No.DE-AC02–77ET 52039, DOE/ET52039–2, McDonell Douglas Astronautics Company, St. Louis Division, Saint Louis, Missouri; April 1981.
  • [52] Veiga C, Davim JP, Loureiro AJR. Properties and applications of titanium alloys: a brief review. Rev Adv Mater Sci. 2012;32:133–48.
  • [53] Titanium-Nitrogen (Ti-N) Phase Diagram; https://pdf4pro.com/amp/view/titanium-nitrogen-ti-n-phase-diagram-calphad-2660ce.html. Accessed 07 Apr 2021.
  • [54] Wriedt HA, Murray JL. The N-Ti (nitrogen-titanium) system. Bulletin of Alloy Phase Diagrams. 1987;8:378–88.
  • [55] Jaffee RI, Campbell IE. The effect of oxygen, nitrogen, and hydrogen on iodide refined titanium. JOM. 1949;1:646–54. https://doi.org/10.1007/BF03398910.
  • [56] Murray JL, Wriedt HA. The O-Ti(Oxygen-Titanium) System. J Phase Equilib. 1987;8:148–65.
  • [57] Fischer E. Thermodynamic calculation of the O-Ti system.J Phase Equilib. 1997;18:338–43. https://doi.org/10.1007/s11669-997-0060-4.
  • [58] Bignolas JB, Bujor M, Bardolle J. A study of the early stages of the kinetics of titanium oxidation by Auger electron spectros-copy and mirror electron microscopy. Surf Sci. 1981;108:L453–9. https://doi.org/10.1016/0039-6028(81)90442-8.
  • [59] Oh JM, Lee BG, Cho SW, Lee SW, Choi GS, Lim JW. Oxygen effects on the mechanical properties and lattice strain of Ti and Ti-6Al-4V. Met Mater Int. 2011;17:733–6. https://doi.org/10.1007/s12540-011-1006-2.
  • [60] Dryzek J, Wróbel M, Dryzek E. Recrystallization in severely deformed Ag, Au, and Fe studied by positron-annihilation and XRD methods. Phys Status Solidi B. 2016;253:2031–42. https://doi.org/10.1002/pssb.201600280.
  • [61] Dryzek J, Wróbel M. Observation of the recrystallization process in pure Nb and Zr using positron lifetime spectroscopy and XRD techniques. Phys Status Solidi B. 2018;255:1800051. https://doi.org/10.1002/pssb.201800051.
  • [62] Mishurova T, Cabeza S, Artzt K, Haubrich J, Klaus M, Genzel Ch, Requena G, Bruno G. New aspects about the search for the most relevant parameters for optimization of SLM materials. Materials. 2017;10:348–62.
  • [63] Yadroitsava I, Yadroitsev I. Residual Stress in Metal Specimens Produced by Direct Laser Sintering. Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, Austin, Texas; 2015. pp. 614–625.
  • [64] Yadroitsava I, Grewar S, Hattingh D, Yadroitsev I. Residual stress in SLM Ti6Al4V alloy specimens. Mater Sci Forum. 2015;828–829:305–10. https://doi.org/10.4028/www.scientific.net/MSF. 828-829.305.
  • [65] Konkova TN, Rachimi S, Blackwell PL. Microstructure and residual stress in Ti-6AL-4V parts made by different additative manu-facturing techniques. Poster presented at Strath Wide Research Conference. The University of Strathcyde, Glasgow; 2017.
  • [66] Lim G, Lau K, Cheng WS, Chiang Z, Krishnan M, Ardi DT: Residual Stresses inTi-6Al-4V Parts Manufactured by Direct Metal Laser Sintering and Electron Beam Melting. BSSM 12-th International Conference on Advances in Experimental Mechanics, University of Sheffield. Sheffield; 2017.
  • [67]Wawra H. Die Kroner-Grenzen der Elastizitatsmodulntechnisch wichtiger Werkstoffe Teil II. Zahlenwerte zur Temperaturabhangingkeit der Moduln der Elemente. Z Metallkd. 1978;69:518–23.
  • [68] Hauk V. Structural and residual stress analysis by nondestructive methods, 1st ed. Elsevier Science, Amsterdam; 1997. ISBN: 9780444824769, eBook ISBN: 9780080541952.
  • [69] Benedetti M, Torresani E, Leoni M, Fontanari V, Bandini M, Pederzolli C, Potrich C. The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting. J Mech Behav Biomed Mater. 2017;71:295–306. https://doi.org/10.1016/j.jmbbm.2017.03.024.
  • [70] Neikter M, Woracek R, Maimaitiyili T, Scheffzük C, Strobl M, Antti ML, Akerfeldt P, Pederson R, Bjerken C. Alpha texture variations in additive manufactured Ti-6Al-4V investigated with neutron diffraction. Addit Manuf. 2018;23:225–34. https://doi.org/10.1016/j.addma.2018.08.018.
  • [71] Antonysamy AA, Meyer J, Prangnell PB. Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti-6Al-4V by selective electron beam melting. Mater Charact. 2013;84:153–68. https://doi.org/10.1016/j.matchar.2013.07.012.
  • [72] Min XH, Zhang L, Sekido K, Ohmura T, Emura S, Tsuchiya K, Tsuzaki T. Strength evolution of α and β phases by nanoindentation in Ti-15Mo alloys with Fe and Al addition. Mater Sci Tech-Lond. 2012;28:342–7. https://doi.org/10.1179/1743284711Y.0000000052.
  • [73] Zambaldi C, Yang Y, Bieler TR, Raabe D. Orientation informed nanoindentation of α-titanium: indentation pileup in hexagonal metals deforming by prismatic slip. J Mater Res. 2012;27:356–67. https://doi.org/10.1557/jmr.2011.334.
  • [74] Guo RP, Xu L, Zong BYP, Yang R. Characterization of prealloyed Ti-6Al-4V powders from EIGA and PREP process and mechanical properties of HIPed powder compacts. Acta Metall Sin Engl. 2017;30:735–44. https://doi.org/10.1007/s40195-017-0540-4.
  • [75] Datasheet 3.7165 Ti-Grade 23 (6Al-4V ELI), METALCOLOR; http://www.metalcor.de/en/datenblatt/130/. Accessed 07 Apr 2021.
  • [76] Zhang H, Dong D, Su S, Chen A. Experimental study of effect of post processing on fracture toughness and fatigue crack growth performance of selective laser melting Ti-6Al-4V. Chinese J Aeronaut. 2019;32:2383–93. https://doi.org/10.1016/j.cja.2018.12.007.
  • [77] Wang W, Xu X, Ma R, Xu G, Liu W. The influence of heat treatment on microstructures and mechanical properties of titanium alloy fabricated by laser melting deposition. Materials. 2020;13:4087. https://doi.org/10.3390/ma13184087.
  • [78] Krakhmalev P, Fredriksson G, Yadroitsava I, Kazantseva N, du Plessis A, Yadroitsev I. Deformation behavior and microstructure of Ti6Al4V manufactured by SLM. Phys Procedia. 2016;83:778–88. https://doi.org/10.1016/j.phpro.2016.08.080.
  • [79] Rafi HK, Karthik NV, Gong H, Starr TL, Stucker BE. Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting. J Mater Eng Perform. 2013;22:3872–83. https://doi.org/10.1007/s11665-013-0658-0.
  • [80] Xu W, Brandt M, Sun S, Elambasseril J, Liu Q, Latham K, Xia K, Qian M. Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition. Acta Mater. 2015;85:74–84. https://doi.org/10.1016/j.actamat.2014.11.028.
  • [81] Moridi A, Demir AG, Caprio L, Hart AJ, Previtali B, Colosimo BM. Deformation and failure mechanisms of Ti-6Al-4V as built by selective laser melting. Mat Sci Eng A. 2019;768: 138456. https://doi.org/10.1016/j.msea.2019.138456.
  • [82] He B, Li J, Cheng X, Wang HM. Brittle fracture behavior of a laser additive manufactured near-β titanium alloy after low temperature aging. Mat Sci Eng A. 2017;699:229–38. https://doi.org/10.1016/j.msea.2017.05.050.
  • [83] Mur LE, Quinones SA, Gaytan SM, Lopez MI, Rodela A, Martinez EY, Hernandez DH, Martinez E, Medina F, Wicker RB. Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater. 2009;2:20–32. https://doi.org/10.1016/j.jmbbm.2008.05.004.
  • [84] Hammer JT, Plastic deformation and ductile fracture of Ti-6Al-4V under various loading conditions, MS Thesis, The Ohio State University, Report No DOT/FAA/TC-TT14/2, Federal Aviation Administration, W.J. Hughes Technical Center, Aviation Research Division. Atlantic City, New Jersey 08405; 2014.
  • [85] Ojo SA. Use of compact specimens to determine fracture toughness and fatigue crack growth anisotropy of DED additivemanufactured Ti-6Al-4V, MS Thesis. Akron: The Acron University; 2020.
  • [86] Bathini U, Srivatsan TS, Patnaik A, Quick T. A study of the tensile deformation and fracture behavior of commercially pure titanium and titanium alloy: influence of orientation and microstructure. J Mater Eng Perform. 2010;19:1172–82. https://doi.org/10.1007/s11665-010-9613-5.
  • [87] Pang Z, Liu Y, Li M, Zhu Ch, Li S, Wang Y, Wang D, Song Ch. Influence of process parameter and strain rate on the dynamic compressive properties of selective laser-melted Ti-6Al-4V alloy. Appl Phys A. 2019;125:90. https://doi.org/10.1007/s00339-018-2359-x.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45d888b0-887d-4463-ad5b-064be8d4d6bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.