PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Variability of chlorophyll a concentration in surface waters of the open Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In situ, satellite and reanalysis data from numerical models were used to study the characteristic features of Chl variability in the Baltic Sea. The analysis is focused on the years 2003–2020 when regular observations of ocean color with the MODIS AQUA are available. In the Baltic Sea, there is a pronounced annual cycle in physical conditions in the water column, driven by seasonal cycles in atmospheric forcing. The seasonal cycle of Chl concentration does not conform to the picture known from classical models, with low phytoplankton concentration when nutrients are low. In contrast, in the Baltic Sea, the concentration of Chl is high even during the summer months when nutrients are depleted. This can be explained by a continuous supply of nutrients by runoff from land, as well as by a significant contribution to primary production by phytoplankton able to survive in environment poor in dissolved nutrients. There is also a considerable interannual variability in Chl. There are many possible cause/effect interactions involved, but the data series are still too short to make clear which of them are the most important. The most striking event was a spring bloom in 2008.
Słowa kluczowe
Czasopismo
Rocznik
Strony
365--380
Opis fizyczny
Bibliogr. 57 poz., rys., tab., wykr.
Twórcy
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • 1. Axell, L., Huess, V., Derval, C., 2019, PUM for the Baltic Sea Biogeochemical Reanalysis Product, E.U. Copernicus Marine Service Information [Online]. Available at: http://marine.copernicus.eu/documents/PUM/CMEMS-BAL-PUM-003-012.pdf.
  • 2. Babin, M., Stramski, D., Ferrari, G.M., Claustre, H., Bricaud, A., Obolensky, G., et al., 2003. Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe. J. Geophys. Res. 108, 3211. https://doi.org/10.1029/2001JC000882
  • 3. Bailey, S.W., Werdell, P.J., 2006. A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sens. Environ. 102, 12-23.
  • 4. Banzon, V.F., Smith, T.M., Chin, T.M., Liu, C., Hankins, W, 2016. A long-term record of blended satellite and in situ sea Surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data 8, 165-176.
  • 5. Banzon, V.F., Reynolds, R.W., Stokes, D., Xue, Y.A., 2014. 1/4 ospatial resolution daily sea surface temperature climatology based on a blended satellite and in situ analysis. J. Clim. 27, 8221-8228.
  • 6. Beltran-Perez, O.D., Waniek, J.J., 2021. Environmental window of cyanobacteria bloom occurrence. J. Marine Syst. 224, 103618. https://doi.org/10.1016/j.jmarsys.2021.103618
  • 7. Beltran-Perez, O.D., Waniek, J.J., 2022. Inter-annual Variability Of Spring And Summer Blooms In The Eastern Baltic Sea. Front. Mar. Sci. 9, 928633. https://doi.org/10.3389/fmars.2022.928633
  • 8. Boyer, T. P., Garcia, H. E., Locarnini, R. A., Zweng, M.M., Mishonov, A. V., Reagan, J. R., Weathers, K. A., Baranova, O.K., Seidov, D., Smolyar, I.V., 2018. World Ocean Atlas, NOAA National Centers for Environmental Information. https://accession.nodc.noaa.gov/NCEI-WOA18
  • 9. Chorus, I., Spijkerman, E., 2021. What Colin Reynolds could tell us about nutrient limitation, N:P ratios and eutrophication control. Hydrobiologia 848, 95-111. https://doi.org/10.1007/s10750- 020- 04377
  • 10. Daewel, U., Schrum, C., 2017. Low-frequency variability in the North Sea and Baltic Sea identified through simulations with the 3-D coupled physical—biogeochemical model ECOSMO. Earth Syst. Dynam. 8, 801-815. https://doi.org/10.5194/esd- 8- 801- 2017
  • 11. Donnelly, C.H., Andersson, J.C.M., Arheimer, B., 2016. Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across. Europe. Hydrol. Sci. J. 61, 255-273.
  • 12. Dutkiewicz, S., Cermeno, P., Jahn, O., Follows, M.J., Hickman, A.E., Taniguchi, D.A.A., Ward, B.A., 2020. Dimensions of marine phytoplankton diversity. Biogeosciences 17, 609-634. https://doi.org/10.5194/bg-17-609-2020
  • 13. Fasham, M.J.R., Ducklow, H.W., McKelvie, S.M., 1990. A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J. Mar. Res. 48, 591-639.
  • 14. Garcia, H.E., Weathers, K., Paver, C.R., Smolyar, I., Boyer, T.P., Locarnini, R.A., Zweng, M.M., Mishonov, A.V., Baranova, O.K., Seidov, D., Reagan, J.R., 2018. World Ocean Atlas Vol. 4: Dissolved Inorganic Nutrients (phosphate, nitrate and nitrate+nitrite, silicate). In: Mishonov, A. (Ed.), NOAA Atlas NESDIS, 84, 35 pp.
  • 15. Hajdu, S., Gorokhova, E., Larsson, U., 2015. In-Depth Analysis of an Alternate-Stage Prymnesium Polylepis (Haptophyta) Bloom and Long-Term Trends in Abundance of Prymnesiales Species in the Baltic Sea. Mar. Ecol. Prog. Ser. 526, 55-66. https://doi.org/10.3354/meps11242
  • 16. Håkanson, L., Bryhn, A.C., 2008. Eutrophication in the Baltic Sea; Present situation, Nutrient transport, Processes, Remedial strategies. In: Environmental Science and Engineering; Subseries: Environmental Science. Springer-Verlag, Berlin, Heidelberg, 261 pp.
  • 17. HELCOM, 2009. Eutrophication in the Baltic Sea — an integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region. Baltic Sea Environ. Proc. 115B, 148 pp.
  • 18. Hjerne, O, Hajdu, S, Larsson, U, Downing, AS, Winder, M., 2019. Climate Driven Changes in Timing, Composition and Magnitude of the Baltic Sea Phytoplankton Spring Bloom. Front. Mar. Sci. 6, 482. https://doi.org/10.3389/fmars.2019.00482
  • 19. Kahru, M., Elmgren, R., Kaiser, J., Wasmund, N., Savchuk, O., 2020. Cyanobacterial blooms in the Baltic Sea: correlations with environmental factors. Harmful Algae 92, 101739. https://doi.org/10.1016/j.hal.2019.101739
  • 20. Kahru, M., Elmgren, R., 2014. Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea. Biogeosciences 11, 3619-3633. https://doi.org/10.5194/bg-11-3619-2014
  • 21. Kowalczuk, P., 1999. Seasonal variability of yellow substance absorption in the surface layer of the Baltic Sea. J. Geophys. Res. 104, 30047-30058. https://doi.org/10.1029/1999JC900198
  • 22. Kraus, E.B., Bleck, R., Hanson, H.P., 1988. The Inclusion of a Surface Mixed Layer in a Large-scale Circulation Model. In: Nihoul, J.C.J., Jamart, B.M. (Eds.), Small Scale Turbulence and Mixing in the Ocean. Elsevier, Amsterdam, 51-62.
  • 23. Kutser, T., 2004. Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnol. Oceanogr. 49, 2179-2189.
  • 24. Lee, Z.-P., Weidemann, A., Kindle, J., Arnone, R., Carder, K.L., Davis, C., 2007. Euphotic Zone Depth: Its Derivation and Implication to Ocean-Color Remote Sensing. J. Geophys. Res. 112, C03009. https://doi.org/10.1029/2006JC003802
  • 25. Leppäranta, M., Myrberg, K., 2009. Physical Oceanography of the Baltic Sea. Springer-Praxis Book Series in Geophysical Sciences. Springer, Chichester, UK, 378 pp.
  • 26. Locarnini, R.A., Mishonov, A.V., Baranova, O.K., Boyer, T.P., Zweng, M.M., Garcia, H.E., Reagan, J.R., Seidov, D., Weathers, K., Paver, C.R., Smolyar, I., 2018. World Ocean Atlas Vol. 1: Temperature. In: Mishonov, A. (Ed.), NOAA Atlas NESDIS, 81, 52 pp.
  • 27. Locarnini, R.A., Boyer, T.P., Mishonov, A.V., Reagan, J.R., Zweng, M.M., Baranova, O.K., Garcia, H.E., Seidov, D., Weathers, K.W., Paver, C.R., Smolyar, I.V., 2019. World Ocean Atlas Vol. 5: Density. In: Mishono, A. (Ed.), NOAA Atlas NESDIS, 41 85.
  • 28. Löptien, U., Dietze, H., 2022. Retracing cyanobacteria blooms in the Baltic Sea. Sci. Rep. 12, 10873. https://doi.org/10.1038/s41598-022-14880-w
  • 29. Lorbacher, K., Dommenget, D., Niiler, P.P., Köhl, A., 2006. Ocean Mixed Layer Depth: A Subsurface Proxy of Ocean-Atmosphere Variability. J. Geophys. Res. 111, C07010. https://doi.org/10.1029/2003JC002157
  • 30. Majaneva, M., Rintala, J.M., Hajdu, S., Hällfors, S., Hällfors, G., Skjevik, A.T., Gromisz, S., Kownacka, J., Busch, S., Blomster, J., 2012. The extensive bloom of alternate-stage Prymnesium polylepis (Haptophyta) in the Baltic Sea during autumn—spring 2007—2008. Eur. J. Phycol. 47, 310-320.
  • 31. Matthäus, W.W., Franck, H., 1992. Characteristics of major Baltic inflows — A statistical analysis. Cont. Shelf Res. 12, 1375-1400.
  • 32. Meier, H.E.M., Eilola, K., Almroth-Rosell, E., 2011. Climaterelated changes in marine ecosystems simulated with a three-dimensional coupled physical-biogeochemical model of the Baltic Sea. Clim. Res. 48, 31-55. https://doi.org/10.3354/cr00968
  • 33. Mobley, C.D., 1994. Light and Water. Radiative Transfer in Natural Waters. Acad. Press, San Diego, California.
  • 34. Mohrholz, V., 2018. Major Baltic Inflow Statistics — Revised, Front. Mar. Sci. 5, 384. https://doi.org/10.3389/fmars.2018.00384
  • 35. Morel, A., 1988. Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters). J. Geophys. Res. 93, 10749-10768.
  • 36. Munkes, B., Löptien, U., Dietze, H., 2021. Cyanobacteria blooms in the Baltic Sea: a review of models and facts. Biogeosciences 18, 2347-2378. https://doi.org/10.5194/bg-18-2347-2021
  • 37. M. Stramska and J. Jakacki National Research Council, 2004. Climate Data Records from Environmental Satellites: Interim Rep. Nat. Acad. Press, Washington, DC, USA. Nerger, L., Hiller, W., Schröter, J., 2005. A Comparison of Error Subspace Kalman Filters. Tellus series a-dynamic meteorology and oceanography A57 (5), 715-735. https://doi.org/10.1111/j.1600-0870.2005.00141.x
  • 38. Neumann, T., Schernewski, G., 2005. An ecological model evaluation of two nutrient abatement strategies for the Baltic Sea. J. Marine Syst. 56, 195-206. https://doi.org/10.1016/j.jmarsys.2004.10.002
  • 39. Neumann, T., Schernewski, G., 2008. Eutrophication in the Baltic Sea and shifts in nitrogen fixation analysed with a 3D ecosystem model. J. Marine Syst. 74, 592-602. https://doi.org/10.1016/j.jmarsys.2008.05.003
  • 40. Niiler, P.P., Kraus, E.B., 1977. One-dimensional Models of the Upper Ocean. In: Kraus, E.B. (Ed.), Modelling and Predictions of the Upper Layers of the Ocean. Pergamon Press, Oxford, 143-172.
  • 41. Nowicki, A., Rak, D., Janecki, M., Dzierzbicka-Głowacka, L., 2016. Accuracy assessment of temperature and salinity computed by the 3D Coupled Ecosystem Model of the Baltic Sea (3D CEMBS) in the Southern Baltic. J. Oper. Oceanogr. 9, 67-73. https://doi.org/10.1080/1755876x.2016.1209368
  • 42. Pemberton, P., Löptien, U., Hordoir, R., Höglund, A., Schimanke, S., Axell, L., Haapala, J., 2017. Sea-ice evaluation of NEMO-Nordic 1.0: a NEMO—LIM3.6-based ocean—sea-ice model setup for the North Sea and Baltic Sea. Geosci. Model Dev. 10, 3105-3123. https://doi.org/10.5194/gmd-10-3105-2017
  • 43. Reynolds, R.W., Smith, T.M., Liu, C., Chelton, D.B., Casey, K.S., Schlax, M.G., 2007. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473-5496. https://doi.org/10.1175/2007JCLI1824.1
  • 44. Savchuk, O.P., 2018. Large-Scale Nutrient Dynamics in the Baltic Sea, 1970—2016. Front. Mar. Sci. 5, 1-20. https://doi.org/10.3389/fmars.2018.00095
  • 45. Savchuk, P.O., Wulff, F., 2007. Modeling the Baltic Sea eutrophication in a decision support system. AMBIO 36, 141-148.
  • 46. Scott, J.P., Werdell, P.J., 2019. Comparing level-2 and level-3 satellite ocean color retrieval validation methodologies. Opt. Express 27, 30140-30157.
  • 47. Seegers, B.N., Stumpf, R.P., Schaeffer, B.A., Loftin, K.A., Werdell, P.J., 2018. Performance metrics for the assessment of satellite data products: an ocean color case study. Opt. Express 26. https://doi.org/10.1364/OE.26.007404
  • 48. Skjoldal, H. R., Dundas, I., 1991. Chrysochromulina polylepis bloom in the Skagerrak and Kattegat in May-June 1988: Environmental conditions, possible causes, and effects. ICES Cooperative Research Reports (CRR). Report. https://doi.org/10.17895/ices.pub.5524
  • 49. Stramska, M., Aniskiewicz, P., 2019. Satellite Remote Sensing Signatures of the Major Baltic Inflows. Remote Sens. 11, 954. https://doi.org/10.3390/rs11080954
  • 50. Stramska, M., Dickey, T., 1993. Phytoplankton bloom and the vertical thermal structure of the upper ocean. J. Mar. Res. 51, 819-842.
  • 51. Stramska, M., Dickey, T., 1994. Modeling phytoplankton dynamics in the northeast Atlantic during the initiation of the spring bloom. J. Geophys. Res. 99, 10241-10253.
  • 52. Stramska, M., Konik, M., Aniskiewicz, P., Jakacki, J., Darecki, M., 2021. Comparisons of Satellite and Modeled Surface Temperature and Chlorophyll Concentrations in the Baltic Sea with In Situ Data. Remote Sens. 13, 3049. https://doi.org/10.3390/rs1315304
  • 53. Stramska, M., Stoń-Egiert, J., Ostrowska, M., 2020. Towards modeling growth rates of cyanobacteria in the Baltic Sea. Estuar. Coast. Shelf Sci. 242, 106853. https://doi.org/10.1016/j.ecss.2020.106853
  • 54. Sverdrup, H.U., 1953. On conditions for the vernal blooming of phytoplankton. ICES J. Mar. Sci. 18, 287-295. https://doi.org/10.1093/icesjms/18.3.287
  • 55. Wasmund, N., Nausch, G., Matthäus, W., 1998. Phytoplankton spring blooms in the southern Baltic Sea: spatio-temporal development and long-term trends. J. Plankton Res. 20, 1099-1117.
  • 56. Wozniak, S.B., Sagan, S., Zabłocka, M., Ston-Egiert, J., Borzycka, K., 2018. Light scattering and backscattering by particles suspended in the Baltic Sea in relation to the mass concentration of particles and the proportions of their organic and inorganic fractions. J. Marine Syst. 182, 79-96. https://doi.org/10.1016/j.jmarsys.2017.12.005
  • 57. Wroblewski, J.S., 1989. A model of the spring bloom in the North Atlantic and its impact on ocean optics. Limnol. Oceanogr. 34, 1563-1572.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45d628ef-c963-4ca8-9688-e967123b07ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.