PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling critical infrastructure accident consequences – an overall approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper the probabilistic general model of critical infrastructure accident consequences (GMCIAC) including the process of initiating events, the process of environment threats and the process of environment degradation models is proposed. Next, the methods of its parameters statistical identification are presented. Futher, the marine traffic across the world and sea accidents were observed. Their initiating events and environment threats coming from released chemical substances as well as environment degradations in the neighbourhood region of sea accident were analysed. Then, the process of initiating events, the process of environment threats and the process of environment degradation were analysed and their states are distinguised.
Rocznik
Strony
1--14
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
autor
  • Maritime University, Gdynia, Poland
  • Maritime University, Gdynia, Poland
Bibliografia
  • [1] Bogalecka, M. (2010). Analysis of sea accidents initial events, Polish Journal of Environmental Studies 19, 4A, 5-8.
  • [2] Bogalecka, M. & Kołowrocki, K. (2006). Probabilistic approach to risk analysis of chemical spills at sea. International Journal of Automation and Computing 2, 117-124.
  • [3] Bogalecka, M. & Kołowrocki, K. (2015). Modelling, identification and prediction of environment degradation initial events process generated by critical infrastructure accidents. Journal of Polish Safety and Reliability Association, Summer Safety and Reliability Seminars 6, 1, 47-66.
  • [4] Bogalecka, M. & Kołowrocki, K. (2015). The process of sea environment threats generated by hazardous chemicals release. Journal of Polish Safety and Reliability Association, Summer Safety and Reliability Seminars 6, 1, 67-74.
  • [5] Cedre. The Internet site of Centre of Documentation, Research and Experimentation on Accidental Water Pollution [available at: www.cedre.fr; accessed: 13.02.2016].
  • [6] Dziula, P., Kołowrocki, K. & Siergiejczyk, M. (2014). Critical infrastructure systems modeling, Journal of Polish Safety and Reliability Association, Summer Safety and Reliability Seminars 5, 1, 41-46.
  • [7] EMSA. (2014). European Maritime Safety Agency. Annual Overview of Marine Casualties and Incidents.
  • [8] EU-CIRCLE Report D1.3-GMU1. (2016). Identification of existing critical infrastructures in the Baltic Sea area and its seaside, their scope, parameters, and accidents in terms of climate change impacts.
  • [9] EU-CIRCLE Report D3.3-GMU22. (2016). Identification of unknown parameters of the General Model of Critical Infrastructure Accident Consequences (GMCIAC).
  • [10] EU-CIRCLE Report D3.3-GMU23. (2016). Adaptation of the General Model of Critical Infrastructure Accident Consequences (GMCIAC) to the prediction of critical infrastructure accident consequences.
  • [11] EU-CIRCLE Report D3.3-GMU24. (2017). Practical application of the General Model of Critical Infrastructure Accident Consequences (GMCIAC) to the chemical spill consequences generated by the accident of one of the ships of the ship critical infrastructure network operating at the Baltic Sea waters.
  • [12] EU-CIRCLE Report D6.4. (2018). Case Study 2: Sea Surge, Extreme Winds and Coastal Flooding in Baltic Sea Port-Conduction.
  • [13] GISIS. Global Integrated Shipping Information System [available at: https://webaccounts.imo. org/; accessed: 13.02.2016].
  • [14] GESAMP. (2014). Revised GESAMP hazard evaluation procedure for chemical substances carried by ships (IMO/FAO/UNESCOIOC/WMO/IAEA/UN/UNEP/UNIDO/UNDP) Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, Rep. Stud. GESAMP 64.
  • [15] GESAMP. (2015). GESAMP Composite List, Issued May 2015 as PPR.1/Circ.2., London [available at: https://edocs.imo.org/Final Documents/English/PPR1-CIRC.2(E).doc; accessed: 13.02.2016].
  • [16] Grabski, F. (2015). Semi-Markov processes: applications in system reliability and maintenance, Elsevier.
  • [17] Häkkinen, J.M. & Posti, A.I. (2014). Review of maritime accident involving chemicals – special focus on the Baltic Sea, The International Journal on Marine Navigation and Safety of Sea Transportation 8, 2, 295-305.
  • [18] HELCOM. (2014). Annual report on shipping accidents in the Baltic Sea in 2013.
  • [19] IMO. (2008). Casualty-related matters reports on marine casualties and incidents. MSCMEPC.3/Circ.3, London.
  • [20] IMO. (2014). International Maritime Dangerous Goods Code (Amendment 37-14), London.
  • [21] Jakusik, E., Czernecki, B., Marosz, M. et al. (2012). Changes of wave height in the Southern Baltic in the 21st century. In: Wibig, J. & Jakusik, E. (Ed.). Climatological and oceanographical conditions in Poland and Southern Baltic. Climate change projections and guidelines for developing adaptation strategies. Monograph, 216-232.
  • [22] Jakusik, E., Wójcik, R., Pilarski, M. et al. (2012). Sea level in the Polish coastal zone – the current state and projected future changes. In: Wibig, J. & Jakusik, E. (Ed.). Climatological and oceanographical conditions in Poland and Southern Baltic. Climate change projections and guidelines for developing adaptation strategies. Monograph, 146-169.
  • [23] Klabjan, D. & Adelman, D. (2006). Existence of optimal policies for semi-Markov decision processes using duality for infinite linear programming. SIAM Journal on Control and Optimization 44, 6, 2104-2122.
  • [24] Kołowrocki, K. (2014). Modeling Reliability of Critical Infrastructures with Application to Port Oil Transportation System. Proc. 11th International Fatigue Congress – IFC 2014. Melbourne, Australia, Advances Materials research 891-892, 1565-1570.
  • [25] Kołowrocki, K. (2014). Reliability of large and complex systems. Amsterdam, Boston, Heidelberd, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sidney, Tokyo, Elsevier.
  • [26] Kołowrocki, K. (2013). Safety of critical infrastructures. Journal of Polish Safety and Reliability Association, Summer Safety and Reliability Seminars 4, 1, 51-72.
  • [27] Kołowrocki, K. (2013). Safety of critical infrastructures – an overall approach. Keynote Speech, International Conference on Safety and Reliability – KONBiN.
  • [28] Kołowrocki, K. & Soszyńska-Budny, J. (2012). Introduction to safety analysis of critical infrastructures. Proc. International Conference on Quality, Reliability, Risk, Maintenance and Safety Engineering – QR2MSE-2012. Chendgu, China, 1-6.
  • [29] Kołowrocki, K. & Soszyńska-Budny, J. (2013). On safety of critical infrastructure modeling with application to port oil transportation system. Journal of Polish Safety and Reliability Association, Summer Safety and Reliability Seminars 4, 2, 189-204.
  • [30] Kołowrocki, K. & Soszyńska-Budny, J. (2014). Optimization of Critical Infrastructures Safety. Proc. of The International Conference on Digital Technologies. Zilina, Slovakia, 150-156.
  • [31] Kołowrocki, K. & Soszyńska-Budny, J. (2014). Prediction of critical infrastructures safety. Proc. of The International Conference on Digital Technologies. Zilina, Slovakia, 141-149.
  • [32] Kołowrocki, K. & Soszyńska-Budny, J. (2012). Preliminary approach to safety analysis of critical infrastructures. Journal of Polish Safety and Reliability Association, Summer Safety and Reliability Seminars 3, 73-88.
  • [33] Kołowrocki, K. & Soszyńska-Budny, J. (2011). Reliability and Safety of Complex Technical Systems and Processes: Modeling – Identification – Prediction – Optimization. London, Dordrecht, Heildeberg, New York, Springer.
  • [34] Mamaca, E., Girin M., le Floch, S. el al. (2009). Review of chemical spills at sea and lessons learnt. Interspill Conference & Exhibition 2009. Marseille: 12-14 May 2009. The 4th IMO R&D forum. A key international conference and exhibition for spill prevention preparedness, response and restoration , 40 [available at: http://www.itopf.com/fileadmin/data/Documents/Papers/interspill09_hnsappendix.pdf; accessed 13.02.2016].
  • [35] Marchand, M. (2002). Chemical spills at sea: case study. In: Fingas, M. (Ed.). The handbook of hazardous materials spills technology. McGraw‐Hill, New York.
  • [36] Soszyńska, J. (2007). Systems reliability analysis in variable operation conditions. International Journal of Reliability, Quality and Safety Engineering. Special Issue: System Reliability and Safety 14, 6, 617-634.
  • [37] Soszyńska-Budny, J. (2014). Optimizing Reliability of Critical Infrastructures with Application to Port Oil Piping Transportation System, Proc. 11th International Fatigue Congress – ICF 2014, Melbourne, Australia, Advances Materials research 891-892, 15711576.
  • [38] Tang, H., Yin, B.G. & Xi, H.S. (2007). Error bounds of optimization algorithms for semi-Markov decision processes. International Journal of Systems Science 38, 9, 725-736.
  • [39] US Coast Guard. Maritime Information Exchange Incident Investigation Reports [available at: http://www.nrc.uscg.mil/; accessed 13.02.2016].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45d09944-9569-45c1-a740-3c3764a112a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.