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The paper is focussed on description finite-amplitude waves in fluid-filled in tubes. The
model equations for study of nonlinear waves are presented here. The used model equations
take into account boundary layer effects which cause not only losses but also dispersion of
waves.

INTRODUCTION

The analyze of nonlinear sound waves in fluid-filled waveguides represents interesting
problem of physical acoustics particularly from the point of view parametric amplification
and generation of sound. This task was solved by many authors but a lot of them was
focussed on study nonlinear waves in waveguides which are not axisymmetric. On the base
of results presented in many works it is obvious that it is necessary to take into account dis-
persion effects which are caused by the presence of lateral boundaries and a boundary layer.

MODEL EQUATIONS

Before writing the basic equations of ”waveguide nonlinear acoustics” let us clarify,
using elementary examples, the nature of the mode synchronism. Consider a re-reflection
of a plane wave between rigid boundaries. On reflection from such boundary the wave
phase does not change, and propagation along a broken line between the boundaries takes
place in a way very similar to that along an appropriate straight path, the only difference
being that the effective velocity of the field energy propagation along the wavegnide axis z
(group velocity) turns out to be smaller than the sound velocity cp. In the case of a finite
amplitude wave the harmonic generation, discontinuity formation, etc., are essentially the
same as in a plane wave (the interaction of noncollinearly propagating waves, i. e. the
incident and reflected waves, proves insignificant within the quadratic approximation). In
this sense a waveguide with rigid walls has no meaningful distinction from free space.
However, in the case of high-frequency nonlinear waves we can observe the jagged wave
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shape in the shock region which is caused by higher-modes excited by the harmonics above
the cutoff frequency of the first mode.
We can use for description nonlinear waves in tubes the following model equations:

The modified Burgers equation
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where v is the particle velocity, 7 = t — /¢y is the retarded time, ¢ is time, z is distance
from a source, py is density, b = 4/37' + 7" +k(1/c, — 1/cy) is dissipative coefficient, 7/, 7"
are the shear and bulk viscosity coefficients, & is the heat-conductivity coefficient, ¢, and
cy are the specific heats at constant pressure and volume, 8 = (y+ 1)/2 is the coefficient
of nonlinearity for gases, y = ¢y/ev, K = v2u[1 + (v — 1)/v/Pr]/2¢eRo, v = 1/ po, Pr is
the Prandtl’s number, Ry is inner diameter of the tube. The suffix "0” is used to indicate
equilibrium values.
The fractional derivate represents following the integrodifferential operator for the acoustic
boundary layer (e.g. see [1]):
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where r is the radial spatial variable.
The boundary condition:

v(0,%) = vy sin(wr) . (3)
The Khokhlov-Zabolotskaya-Kuznetzov (KZK) equation (see [2])
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where v and w are the axial and radial velocity, respectively.
The boundary conditions:
v(0,7,t) = U (r) sin(wr) . (6)
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The following conditions must be satisfied for the Stokes boundary layer thickness
d =4/2v/w in order the model equations (1) and (4) could be used:

§/Rymp<<1 and §/Am~ p<<1, (8)
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where g is a small parameter that is equal in nonlinear acoustics to the peak Mach number
of the source and A is the wavelength.

In the case of the model equation (1) it is supposed that the main harmonics of a wave
must be below the cutoff frequency of the first mode. We can obtain from the condition
for the axisymmetrical transversal modes

nkRo < 1,841 . (9)

We can suppose higher harmonics can be so small in the shock region that the condition
from (8) has not to be satisfied. However, in this case the dominant loss mechanism shifts
from wall losses to Navier-Stokes losses, increasing as the square of the frequency. At
high frequencies, boundary layer dispersive effects would still remain, but should be small
enough to allow the approximation of phase speed by ¢y. Then, the requirement on the
ratio of boundary layer thickness to wavelength would become less important because of
the unimportance of the boundary layer effects.

The exact solution of given equations is not possible in this moment. There are a large
number of approximate solutions. For a brief analysis it is suitable to use, in the case of
sinusoidal waves, the approximate solution presented in [1]. If we need to appreciate all
effects included in the equations, we must use the numerical solution.

The widely used method is the solution of these equations in the frequency domain.
When the source is periodic in time, it is possible to find the solution in the form of Fourier
series

the cutoff frequency as

00
v(1,2,7) = Y (9n(2, ) sin(n7)) + ha(z, ) cos(nr) (10)
n=1
In order to do numerical integration, the infinite series (10) has to be truncated. This
means that the flow of energy from lower to higher harmonics stops with the last harmonic
retained in the series. So the calculated value for this last harmonic cab become large
in comparison to the lower harmonics. Then one can observe the energy transfer also
from higher to lower harmonics. In some cases, this can cause the numerical instability.
We can circumvent this problem when we filter all harmonics by numerical filter, which
guarantees that the amplitude of any harmonics never exceeds the amplitude of the next
lower harmonics.

The stability of numerical solution is also dependent on the absorption term. Exploring
ideal liquids it is necessary to add an fictitious attenuation term. The solution becomes
unstable with increasing Goldberg number to values that are greater than 100 -150 when
the integration exceeds the discontinuity distance.

It is possible to solve the Burgers equation in the frequency domain by means of the
standard Runge-Kutta method of fourth order. But this equation does not give any infor-
mation about changes of velocity on the radius of the tube.

Widely used method of numerical solution of KZK equation is described in [3] (Bergen
Code). But this method is for solution of sound beam propagation in the free space. To
solve the case of a tube it is necessary to add an boundary condition which takes into
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account the boundary layer which takes into account the reflections of sound waves from
the duct walls and dispersion, which does not arise in the free space propagation

CONCLUSION

The numerical analysis shows that it is necessary to take into account also the mem-
bers which represent the boundary layer effect in model equations. Therefore the standard
Burgers equation can be used only in the case of the negligible boundary layer effects. The
boundary layer significantly can influence the form of sound waves, especially due to the
dispersion. The dispersion make the asymmetry of the primary symmetrical waves; the
peak is rounded while the trough remains sharp. The effects of dispersion grow stronger
with distance: the harmonics get more and more out of step with each other,
Experimental and numerical results show that it is necessary to use for description nonlin-
ear waves in tubes the model equations which take into account boundary layer effects.
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