PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Caustic-digested starch and its adsorption on hematite

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Adsorption characteristics on hematite of caustic-digested starch by sodium hydroxide or potassium hydroxide were investigated through a series of tests, like adsorption tests, paste titration and zeta potentials measurement, scanning electron microscope measurement (SEM) and Fourier transform infrared spectroscopic analysis (FTIR) as well. An attempt was made in order to identify the possible effects of starch digested with alkali at different concentrations on its adsorption on mineral surfaces. All results pointed out that a different amount of carboxyl groups in the starch gel were harvested from alkali-digestion as a function of concentrations of sodium hydroxide or potassium hydroxide; more acidic groups were produced if higher concentrations of alkali were added. These carboxyl groups may contribute the acid/base interaction of the caustic-digested starch on hematite. Also, different concentrations of sodium hydroxide to digest starch seem to induce different degrees of its gelatinization from the SEM results, partially attributing to a wide range of its adsorption capacities on mineral surfaces. The optimum adsorption density of the caustic-digested starch on mineral surfaces, 9.87 mg/g hematite for sodium hydroxide and 10.51 mg/g hematite for potassium hydroxide, respectively, was achieved at the weight ratio of starch to sodium/potassium hydroxide as 1:2.
Słowa kluczowe
Rocznik
Strony
69--81
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
  • State Key Lab of Complex Nonferrous Metal Resources Clean Utilization, 650093, China
  • Department of Mineral Processing, Kunming University of Science and Technology, Yunnan, China, 650093
autor
  • State Key Lab of Complex Nonferrous Metal Resources Clean Utilization, 650093, China
  • Department of Mineral Processing, Kunming University of Science and Technology, Yunnan, China, 650093
autor
  • State Key Lab of Complex Nonferrous Metal Resources Clean Utilization, 650093, China
  • Department of Mineral Processing, Kunming University of Science and Technology, Yunnan, China, 650093
Bibliografia
  • CAO Q., TIAN P., WU Q.L., 2009, Modeling diameter distributions of poly (N-isopropyacrylamide-co-methacrylic acid) nanoparticles, J. Appl. Polym. Sci. 111, 2584-2589.
  • CASU B., REGGIANI M., 1966, Conformation of amylose and its derived products i. infrared spectra of amylose and its oligomers in the amorphous solid phase and in solution, Die Stärke. 18, 218-228.
  • CHATTOPADHYAY S.S., SINGHAL R.S., KULKARNI P.R., 1997, Optimization of conditions of synthesis of an oxidized starch from corn and amaranth in film-forming applications, Carbohydr. Polym. 34, 203-212.
  • DE WIT G., KIEBOOM A.P.G., VAN BEKKUM H., 1979, Enolisation and isomerization of monosaccharides in aqueous, alkaline solution, Carbohydr Res.74, 157-135.
  • DUBOIS M., GILLES K.A., HAMILTON J.K., REBERS P.A., SMITH F., 1956, Colorimetric method for determination of sugars and related substances, Anal. Chem. 28, 350-356.
  • ERGUOERLANG, 1980, Handbook of starch science, Light Industry Press, Beijing.
  • FEKE G.T., PRINS W., 1974, Spinodal phase separation in a macromolecular sol-gel transition, Macromol. 7, 527-530.
  • FRENCH D., 1984, Organization of starch granules, in Book- Starch edited by R.L. Whistler, J.N. Bemiller, E.F. Paschall, Academic Press. INC, London.
  • GERMANN H.R., NIEUWENHUIS H.J.W., BICKEL A.F., 1963, Degradation of cellulose by alkali oxidation, Carbohydr. Res. 74, 1383-1385
  • GOUGH B.M., PYBUS J.N., 1971, Effect on the gelatinization temperature of wheat starch granules of pro-long treatment with water at 55°C. Starch/ Stärke. 230, 210-212.
  • HADJIIVANOV K.I., VAYSSILOV G.N., 2002, Characterization of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule, Adv. Catal. 47, 307-511.
  • ISBELL H.S., FRUSH H.L., WADE C.W.R., HUNTER C.E., 1969, Transformations of sugars in alkaline solutions, Carbohydr. Res. 9, 163-175.
  • JEBBER K.A., ZHANG K., CASSADY C.J., CHUNG-PHILIPS A., 1996, An initio and experimental studies on the protonation of glucose in the gas phase, J. Am. Chem. Soc. 118, 10515-10563.
  • KHOSLA N.K., BHAGAT R.P., GANDHI K.S., BISWAS A.K., 1984, Calorimetric and other interaction studies on mineral—starch adsorption systems, Colloids Surf., A: Physicochem. Eng. Aspects 8, 321-336.
  • KORAL J., UИMAN R., EIRICH F.R., 1958, The adsorption of polyvinylacetate, Chem. 62, 541-550.
  • LASKOWSKI J.S., LIU Q., O’CONNER C.T., 2007, Current understanding of the mechanism of polysaccharide adsorption at the mineral/aqueous solution interface, Int. J. Miner. Process. 84, 59-68.
  • LI Y., 2004, Processing technology of polysaccharides, Chemical Engineering Press, Beijing.
  • LIU Q., CHARLET G., YELLE S., ARUL J., 2002, Phase transition in potato starch-water system I. Starch gelatinization at high moisture level, Food Res. Inter. 35, 397-407.
  • LIU Q., ZHANG Y., LASKOWSKI J.S., 2000, The adsorption of polysaccharides onto mineral surfaces: an acid/base interaction. Int. J. Miner. Process. 60, 229-245.
  • MA X., 2006, Role of solvation energy in starch adsorption on oxide surface, Colloids Surf. A: Physicochem. Eng. Aspects 320 (2006) 36-42.
  • MA X., PAWLIK M., 2005, Effect of alkali metal cations on adsorption of guar gum onto quartz, J. Colloid. Interface. Sci. 289, 48-55.
  • MA X., PAWLIK, M., 2005, Effect of alkali metal cations on adsorption of guar gum onto quartz, Colloid. Inter. Sci. 289, 48-55.
  • MATTISSON, M.F., LEGENDRE, K.A., 1952, Determination of carboxyl content of oxidized starches, Anal. Chem. 24, 1942-1944.
  • NIEMELA K., 1990, Conversion of xylan, starch, and chitin into carboxylic acids by treatment with alkali, Carbohydr. Res. 204, 37-49.
  • OOSTEN B.J., 1990, Interaction between starch and electrolytes, Starch/Stärke. 42, 327-333.
  • PATRIDGE A.C., SMITH G.W., 1971, Flotation and adsorption characteristics of the hematite-dodecylamine-starch system, Can. Metall. Q. 10, 229-236.
  • PAVLOVIC S., BRANDO P.R.G., 2003, Adsorption of starch, amylose, amylopectin and glucose monomer and their effect on the flotation of hematite and quartz, Miner. Eng. 16, 1117-1122.
  • PERES A.E.C., CORREA M.I., 1996, Depression of iron oxides with corn starch, Miner. Eng. 9, 1227-1234.
  • PINTO C.L.L., DE ARAUJO A.C., PERES A.E.C., 1992, The effect of starch, amylose and amylopectin on the depression of oxidize- minerals, Miner. Eng. 5, 467-478.
  • RAO K.H., NARASIMHAN K.S., 1985, Selective flocculation applied to Barsuan Iron ore tailings, Int. J. Miner. Process 14, 67-75.
  • RAVISHANKAR S.A., PRADIP KHOSLA N.K., 1995, Selective flocculation of iron oxide from its synthetic mixtures with clays: A comparison of polyacrylic acid and starch polymers, Int. J. Miner. Process. 43, 235-247.
  • ROBERTS S.A., CAMERON R.E., 2002, The effects of concentration and sodium hydroxide on the rheological properties of potato starch gelatinization, Carbohydr. Polym. 50, 133-143.
  • ROCHA L., CANCADO R.Z.L., PERES A.E.C., 2010, Iron ore slimes flotation, Miner. Eng. 23, 842-845.
  • SCHULZ N.F., COOKE S.R.B., 1953, Froth flotation of iron ores, Ind. Eng. Chem. 45, 2767-2772.
  • SOMASUNDARAN P., WANG D., 1985, Mineral-flotation reagent equilibria, Develop. Miner. Proc. 17, 73-141.
  • TANG M., LIU Q., 2012, The acidity of caustic digested starch and tis role in starch adsorption on mineral surfaces, Int. J. Miner. Process. 112-113, 94-100.
  • TOMASIK P., SCHILLING C.H., 2004, Chemical modification of starch, advances in carbohydrate chemistry and biochemistry, Adv. Carbohydr. Chem. Biochem. 59, 175-403.
  • TURRER H.D.G., PERES, A.E.C., 2010, Investigation on alternative depressants for iron ore flotation, Miner. Eng. 23, 1066-1069.
  • VIANA, P.R.M., SOUZA, H.S., 1988, The use of corn grits as a depressant for the flotation of quartz in hematite ore, Froth Flotation, Developments in Mineral Processing, Elsevier, Amsterdam.
  • WEN Y., TONG S., ZHENG K., WANG L., LV J., TONG J., 2006, Removal of terephthalic acid in alkalized wastewater by ferric chloride, J. Hazard. Mat. 138, 169-172.
  • WESSENBORN P.K., WARREN L.J., DUNN J.G., 1995, Selective flocculation of ultrafine iron ore 2 mechanism of selective flocculation, Colloids Surf., A: Physicochem. Eng. Aspects 99, 11-27.
  • WOOTON M., HO P., 1989, Alkali gelatinisation of wheat starch, Starch/Stärke 41, 261-265.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45c8d7b4-473a-4729-b0b9-f35692ed7bfb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.