PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determining the optimum cut-off grades in sulfide copper deposits

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Określanie optymalnej wartości odcięcia zawartości procentowej pierwiastka użytecznego w złożach siarczku miedzi
Języki publikacji
EN
Abstrakty
EN
Optimum cut-off grades determination in mining life affects production planning and ultimate pit limit and it is also important from social, economical and environmental aspects. Calculation of optimum cut-off grades has been less considered for mines containing various mineral processing methods. In this paper, an optimization technique is applied to obtain optimum cut-off grades for both concentration and heap leaching processes. In this technique, production costs and different recoveries of heap leaching method directed into modeling different annual cash flows in copper mines. Considering the governing constraints, the Lagrange multiplier method is practiced to optimize the cut-off grades in which the objective function is supposed to maximize Net Present Value. The results indicate the effect of heap leaching process on the optimum cut-off grades of primary and secondary sulfide deposits.
PL
Określanie optymalnego poziomu odcięcia dla zawartości procentowej pierwiastka użytecznego ma poważny wpływ na planowanie produkcji, określanie ostatecznych limitów zasobów złoża; jest to także ważna kwestia z punktu widzenia kwestii społecznych, ekonomicznych i środowiskowych. Obliczanie optymalnego poziomu odcięcia dla zawartości procentowej pierwiastka użytecznego nie było zwykle szeroko rozważane w przypadku kopalni prowadzących ciągły system przeróbki. W pracy tej przedstawiono technikę optymalizacji określania poziomu zawartości procentowej pierwiastka użytecznego z uwzględnieniem zarówno procesów koncentracji jak i ługowania. W metodzie uwzględniono koszty produkcji i różne wskaźniki odzysku rudy, wielkości te wykorzystane zostały do modelowania rocznych przepływów gotówki w kopalniach miedzi. Uwzględniając narzucone ograniczenia, zastosowano metodę mnożników Lagrange’a w celu optymalizacji określania poziomu zawartości procentowej pierwiastka użytecznego, gdzie przyjętą funkcją celu jest maksymalizacja wartości bieżącej netto. Wyniki wskazują wpływ procesów ługowania na zawartość procentową pierwiastka użytecznego w rudzie pochodzącej z pierwotnych lub wtórnych złóż siarczku miedzi.
Rocznik
Strony
313--328
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mining Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
autor
  • Stirling University, UK
  • Mining Engineering Department, University of Tehran, Tehran, Iran
  • K.N.Toosi University of Technology, Tehran, Iran
Bibliografia
  • [1] Asad M., 2007. Optimum cut-off grade policy for open pit mining operations through net present value algorithm considering metal price and cost escalation. International Journal for Computer-Aided Engineering and Software, 18 June, Vol. 24, p. 723-736.
  • [2] Asad M., Topal E., 2011. Net present value maximization model for optimum cut-off grade policy of open pit miting operations. The Journal of The Southern African Institute of Mining and Metallurgy, November, Vol. 111, p. 741-750.
  • [3] Ataei M., Osanloo M., 2003. Determination of optimum cutoff grades of multiple metal deposits by using the Golden Section search method. The Journal of The South African Institute of Mining and Metallurgy, October, p. 493-500.
  • [4] Bartlett R.W., 1992. Solution Mining: Leaching and Fluid Recovery of Materials. Second ed. Amsterdam: Gordon & Breach Science Publisher.
  • [5] Bartlett R.W., 1997. Metal Extraction from Ores by Heap Leaching. Metallurgical and Materials Transactions B, August, Vol. 28, p. 529-545.
  • [6] Bascetin A., Nieto A., 2007. Determination of optimal cut-off grade policy to optimize NPV using a new approach with optimization factor. The Journal of The Southern African Institute of Mining and Metallurgy, Vol. 107, p. 87-94.
  • [7] Bouffard S., Dixon D., 2001. Investigative study into the hydrodynamics of heap leaching processes. [In:] Biomining. Berlin Heidelberg New York: Springer, p. 763-776.
  • [8] Brierley J., Brierley C., 2001. Present and future commercial applications of biohydrometallurgy. Hydrometallurgy, 7 March, 59(2-3), p. 233-239.
  • [9] Davenport W., King M., Schlesinger M., Biswas A., 2002. Extractive metallurgy of copper. Kidlington: Elsevier.
  • [10] Davey R., 1979. C. Mineral Block evaluation criteria. [In:] Open pit mine planing and design. Roiterdam: SME-AIME, p. 83-96.
  • [11] Dixon D., 2000. Analysis of heat conservation during copper sulfide heap leaching. [In:] Biomining. Berlin Heidelberg New York: Springer, p. 27-41.
  • [12] Dopson M., Baker-Austin C., Koppineedi P., Bond P., 2003. Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. [In:] Biomining. Berlin Heidelberg New York: Springer, p. 1959-1970.
  • [13] Dreisinger D., 2006. Copper leaching from primary sulfides: Options for biological and chemical extraction of copper. Hydrometallurgy, 2 May, p. 10-20.
  • [14] Habashi F., 1999. A Textbook of Hydrometallurgy. 2nd edition ed. Quebec(Sainte Foy): Metallurgie Extractive.
  • [15] He Y. et al., 2009. Theory and method of genetic-neural optimizing cut-off grade and grade of crude ore. Expert Systems with Applications, p. 7617-7623.
  • [16] Johnson P., Evatt G., Duck P., Howell S., 2011. The Determination of a Dynamic Cut-Off grade for the Mining Industry, Manchester, M13 9PL,: Springer.
  • [17] Khodayari A. & Jafarnejad A., 2012. Cut-off Grade Optimization for Maximizing the Output Rate. Int. J. Min. & Geo.-Eng. (IJMGE), 46(1), p. 51-56.
  • [18] Lane K., 1964. Choosing the optimum cut-off grades. Colorado School Mines: Q 59:485-492.
  • [19] Lane K., 1988. The Economic Definition of Ore-Cut-Off Grades in Theory and practice. Mining Journal Books Limited.
  • [20] Osanloo M., Ataei M., 2003. Using equivalent grade factors to find the optimum cut-off grades of multiple metal deposits. Minerals Engineering, Vol. 16, p. 771-776.
  • [21] Osanloo M., Rashidinejad F., Rezai B., 2008. Incorporating environmental issues into optimum cut-off grades modeling at porphyry copper deposits. Resources Policy, 6 June, p. 222-229.
  • [22] Padilla G.A., Cisternas L.A., Cueto J.Y., 2008. On the optimization of heap leaching. Minerals Engineering, p. 673-678.
  • [23] Rahimi E., Oraee K., Shafahi Tonkaboni Z, Ghasemzadeh H., 2014. Considering environmental costs of copper production in cut-off grades optimization. Arab. J. Geosci., In press, Doi: 10.1007/s12517-014-1646-x.
  • [24] Rashidinejad F., Osanloo M., Rezai B., 2008a. An environmental oriented model for optimum cut off grades in open pit mining projects to minimize acid mine drainage. Int. J. Environ. Sci. Tech., Vol. 5, p. 183-194.
  • [25] Rashidinejad F., Osanloo M., Rezai B., 2008b. Cutoff Grades Optimization with Environmental Management; a Case Study:Sungun Copper Project. Iust. International Journal of Engineering Science, Vol. 19, p. 1-13.
  • [26] Rawlings D., Dew D., du Plessis C., 2003. Biomineralization of metal-containing ores and oncentrates. [In:] Biomining. Berlin Heidelberg New York: Springer, p. 38-44.
  • [27] Rendu J.-M., 2008. An Introduction to Cutoff Grade Estimation. s.l.:(The Society for Mining, Metallurgy and Exploration Inc: Littleton).
  • [28] Rendu J.-M., 2009. Cut-Off Grade Estimation – Old Principles Revisited – Application to Optimisation of Net Prezent Value and Internal Rate of Return. Perth, s.n., p. 165-169.
  • [29] Renman R., Jiankang W., Jinghe C., 2006. Bacterial heap-leaching: Practice in Zijinshan copper mine. Hydrometallurgy, 3 July, p. 77-82.
  • [30] Simpson S., Apte S., Hortle K., Richards D., 1998. An evaluation of copper remobilization from mine tailings in sulfidic environments. Journal of Geochemical Exploration, 27 July, p. 203-215.
  • [31] Sukla L.B. et al., 2009. Recovery of copper values from bio-heap leaching of low grade Malanjkhand chalcopyrite ore. Korean J. Chem. Eng., p. 1668-1674.
  • [32] Watling H., 2006. The bioleaching of sulphide minerals with emphasis on copper sulphides – A review. Hydrometallurgy, October , 84(1-2), p. 81-108.
  • [33] Wu A. et al., 2008. Technological assessment of a mining-waste dump at the Dexing copper mine, China, for possible conversion to an in situ bioleaching operation. Bioresource Technology, p. 1931-1936.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45c863ae-81fd-45f0-ba22-30c4cc2e0e8a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.