PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal Decomposition Characteristics of Ammonium Nitrate(V) in the Presence of Mn2O3/Graphene Oxides

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nano-composites (Mn2O3, Mn2O3/graphene oxides (GO)) were prepared by a new method. The nano-composites were characterized by XRD and HRTEM. The catalytic performance of the nano-composites on the thermal decomposition of ammonium nitrate(V) (AN) was investigated by TG-DSC and TG-MS. The reaction of AN with the nano-composites in the condensed phase was investigated by RSFTIR. The results of TG-DSC experiments indicated that the nano-composites significantly catalyze the thermal decomposition of AN, especial Mn2O3/GO. The exothermic reaction of AN with Mn2O3/GO commenced at about 185 °C. Based on the TG-MS results, it was ascribed to N2O formation. In the RSFTIR experiments, the dissociation reaction and ionization reaction of AN were both detected. NOx formation at low temperature was also found. NH2 was directly oxidized by HNO3/NO3− at low temperature. The interaction between Mn2O3 and NH3 was detected according to DRIFT experiments. At elevated temperature, the functional groups of GO are destroyed, which had an influence on the interaction between Mn2O3 and GO. A probable mechanism for the exothermic reaction and then its disappearance is proposed. HNO3 gas was absorbed on the surface of solid AN, which can markedly catalyze the thermal decomposition of AN. Perhaps the HNO3 plays a key role in the exothermic reaction and then the reaction of AN disappears at very low temperatures.
Rocznik
Strony
636--659
Opis fizyczny
Bibliogr. 58 poz., rys., tab.
Twórcy
autor
  • School of Energy and Power Engineering, Jiangsu University, Xuefu road 301, Zhenjiang, Jiangsu Province, 212013 Zhenjiang, China
autor
  • School of Energy and Power Engineering, Jiangsu University, Xuefu road 301, Zhenjiang, Jiangsu Province, 212013 Zhenjiang, China
autor
  • School of Energy and Power Engineering, Jiangsu University, Xuefu road 301, Zhenjiang, Jiangsu Province, 212013 Zhenjiang, China
autor
  • School of Energy and Power Engineering, Jiangsu University, Xuefu road 301, Zhenjiang, Jiangsu Province, 212013 Zhenjiang, China
Bibliografia
  • [1] Oommen, C.; Jain, S. R. Ammonium Nitrate: a Promising Rocket Propellant Oxidizer. J. Hazard. Mater. 1999, 67(3): 253-281.
  • [2] Shalini, Ch.; Pragnesh, N. D. Review on Thermal Decomposition of Ammonium Nitrate. J. Energ. Mater. 2013, 31(1): 1-26.
  • [3] Sinditskii, V.; Egorshev, V.; Levshenkov, A.; Serushkin, V. V. Ammonium Nitrate: Combustion Mechanism and the Role of Additives. Propellants Explos. Pyrotech. 2005, 30(4): 269-280.
  • [4] Xu, Z.; Fu, X.; Wang, Q. Phase Stability of Ammonium Nitrate with Organic Potassium Salts. Cent. Eur. J. Energ. Mater. 2016, 13(3): 736-754.
  • [5] Tomoki, N.; Makoto, K. Burning Characteristics of Ammonium Nitrate-based Composite Propellants Supplemented with Mn2O3. Propellants Explos. Pyrotech. 2013, 38(1): 87-94.
  • [6] Makoto, K.; Tomoki, N. Thermal Decomposition Behaviors and Burning Characteristics of AN/RDX-based Composite Propellants Supplemented with Mn2O3 and Fe2O3. J. Energ. Mater. 2015, 33(2): 288-304.
  • [7] Tomoki, N.; Makoto, K. Burning Characteristics of Ammonium Nitrate-based Composite Propellants Supplemented with Fe2O3. Propellants Explos. Pyrotech. 2013, 38(4): 547-554.
  • [8] Vargeese, A. A.; Muralidharan, K. Anatase-Brookite Mixed Phase Nano TiO2 Catalyzed Homolytic Decomposition of Ammonium Nitrate. J. Hazard. Mater. 2011, 192(3): 1314-1320.
  • [9] Vargeese, A. A.; Muralidharan, K.; Krishnamurthy, V. N. Kinetics of Nano Titanium Dioxide Catalyzed Thermal Decomposition of Ammonium Nitrate and Ammonium Nitrate-based Composite Solid Propellant. Propellants Explos. Pyrotech. 2015, 40(2): 260-266.
  • [10] Sinditskii, V. P.; Egorshev, V. Y.; Levshenkov, A. I., Serushkin, V. V. Ammonium Nitrate: Combustion Mechanism and the Role of Additives. Propellants Explos. Pyrotech. 2005, 30(4): 269-280.
  • [11] Xu, Z.; Liu, D.; Hu, Y.; Ye, Z.; Wei, Y. Influence of Iron Ion on Thermal Behavior of Ammonium Nitrate and Emulsion Explosives. Cent. Eur. J. Energ. Mater. 2010, 7(1): 77-93.
  • [12] Kapoor, I. P. S.; Srivastava, P.; Singh, G. Nanocrystalline Transition Metal Oxides as Catalysts in the Thermal Decomposition of Ammonium Perchlorate. Propellants Explos. Pyrotech. 2009, 34(4): 351-356.
  • [13] Izato, Y.; Miyake, A. Combustion Characteristics of Ammonium Nitrate and Carbon Mixtures Based on a Thermal Decomposition Mechanism. Propellants Explos. Pyrotech. 2013, 38(1): 129-135.
  • [14] Pumera, M.; Wong, C. H. A. Graphane and Hydrogenated Graphene. Chem. Soc. Rev. 2013, 42(14): 5955-5987.
  • [15] Wu, Z.; Ren, W.; Wen, L.; Gao, L.; Zhao, J.; Chen, Z.; Zhou, G.; Li, F.; Cheng, H. Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance. ACS Nano 2010, 4(6): 3187-3194.
  • [16] Li, N.; Geng, Zh.; Cao, M.; Ren, L.; Zhao, X.; Liu, B.; Tian, Y.; Hu, Ch. Welldispersed Ultrafine Mn3O4 Nanoparticles on Graphene as a Promising Catalyst for the Thermal Decomposition of Ammonium Perchlorate. Carbon 2013, 54: 124-132.
  • [17] Xu, Ch.; Wang, X.; Zhu, J.; Yang, X.; Lu, L. Deposition of Co3O4 Nanoparticles onto Exfoliated Graphite Oxide Sheets. J. Mater. Chem. 2008, 18(46): 5625-05629.
  • [18] Yuan, Y.; Wei, J.; Yu, J.; Shen, P.; Li, F.; Li, P.; Zhao, F.; Gao, H. Hydrothermal Preparation of Fe2O3/Graphene Nanocomposite and Its Enhanced Catalytic Activity on the Thermal Decomposition of Ammonium Perchlorate. Appl. Surf. Sci. 2014, 303: 354-359.
  • [19] Abhijit, D.; Javaid, A.; Pankaj, V.; Hima, P.; Arun, K. S.; Santanu, C. Graphene-Iron Oxide Nanocomposite (GINC): Anefficient Catalyst for Ammonium Perchlorate (AP) Decomposition and Burn Rate Enhancer for AP Based Composite Propellant. RSC Adv. 2015, 5(3): 1950-1960.
  • [20] Lan, Y.; Jin, M.; Luo, Y. Preparation and Characterization of Graphene Aerogel/Fe2O3/Ammonium Perchlorate Nano-structured Energetic Composite. J. Sol-Gel. Sci. Tech. 2015, 74(1): 161-167.
  • [21] Li, N.; Cao, M.; Wu, Q.; Hu, C. A facile One-step Method to Produce Ni/Graphene Nanocomposites and Their Application to the Thermal Decomposition of Ammonium Perchlorate. Cryst. Eng. Comm. 2012, 14(2): 428-434.
  • [22] Hu, H.; Cai, S.; Li, H.; Huang, L.; Shi, l.; Zhang, D. Mechanistic Aspects of deNOx Processing over TiO2 Supported Co-Mn Oxide Catalysts: Structure-Activity Relationships and In Situ DRIFTs Analysis. ACS Catal. 2015, 5(10): 6069-6077.
  • [23] Kim, Y.; Kwon, H.; Heo, I.; Nam, I.; Cho, B. K.; Choung, J.; Cha, M.; Yeo, G. Mn-Fe/ZSM5 as a Low-temperature SCR Catalyst to Remove NOx from Diesel Engine Exhaust. Appl Cata B: Envir. 2012, 126: 9-21.
  • [24] Schill, L.; Putluru, S. S. R.; Fehrmann, R.; Jensen, A. D. Low-temperature NH3-SCR of NO on Mesoporous Mn0.6Fe0.4/TiO2 Prepared by a Hydrothermal Method. Catal Let. 2014, 144(3): 395-402.
  • [25] Hummers, W.; Offeman, R. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80(6): 1339-1339.
  • [26] Ozawa, T. A New Method of Analyzing Thermogravimetric Data. Bull. Chem. Soc. Jpn. 1965, 38: 1881-1886.
  • [27] Xu, Z.; Pan, Z.; Zhang, P. Influence of Phosphatide on Emulsion Explosives Thermal Stability. China Saf. Sci. J. 2015, 25(5): 49-55.
  • [28] Wang, S.; Xu, Z.; Wang, Q. Thermal Decomposition Mechanism of Emulsion Explosives with Phosphatide. J. Therm. Anal. Calorim. 2016, 124(2): 1053-1062.
  • [29] Xu, Z.; Wang, Q.; Fu, X. Thermal Stability and Mechanism of Decomposition of Emulsion Explosives in the Presence of Pyrite. J. Hazard. Mater. 2015, 300: 702-710.
  • [30] Xu, Z.; Xu, G.; Fu, X.; Wang, Q. The Mechanism of Nano-CuO and CuFe2O4 Catalyzed Thermal Decomposition of Ammonium Nitrate. Nanomater. Nanotechno. 2016, 6: 1-10.
  • [31] Koga, N.; Tanaka, H. Effect of Sample Mass on the Kinetics of Thermal Decomposition of a Solid. Part 3. Non-isothermal Mass Loss Process of Molten NH4NO3. Thermochim. Acta 1994, 240: 141-151.
  • [32] Dilip, G. P.; Sampat, R. J.; Thomas, B. B. Thermal Decomposition of Energetic Materials 56, on the Fast Thermolysis Mechanism of Ammonium Nitrate and Its Mixtures with Mangnesium and Carbon. Propellants Explos. Pyrotech. 1992, 17(3): 99-105.
  • [33] Brill, T. B.; Brush, P. J.; Patil, D. G. Thermal Decomposition of Energetic Materials 58. Chemistry of Ammonium Nitrate and Ammonium Dinitramide Near the Burning Surface Temperature. Combust. Flame 1993, 92(1): 178-186.
  • [34] Chen, H.; Wei, Z.; Kollar, M.; Gao, F.; Wang, Y.; Szanyi, J.; Peden, C. H., A Comparative Study of N2O Formation During the Selective Catalytic Reduction of NOx with NH3 on Zeolite Supported Cu Catalysts. J. Catal. 2015, 329: 490-498.
  • [35] Andersen, W.; Bills, K.; Mishuck, E.; Moe, G.; Schultz, R. D. A Model Describing Combustion of Solid Composite Propellants Containing Ammonium Nitrate. Combust. Flame 1959, 3: 301-317.
  • [36] Östmark, H.; Wallin, S.; Ang, H. G. Vapor Pressure of Explosives: a Critical Review. Propellants Explos. Pyrotech. 2012, 37(1): 12-23.
  • [37] Wu, H.; Chan, M.; Chan, Ch. FTIR Characterization of Polymorphic Transformation of Ammonium Nitrate. Aerosol Sci. Tech. 2007, 41(6): 581-588.
  • [38] Theoret, A.; Sandorfy, C. Infrared Spectra and Crystalline Phase Transitions of Ammonium Nitrate. Can. J. Chem. 1964, 42(1): 57-62.
  • [39] Izato, Y.; Miyake, A. Thermal Decomposition of Molten Ammonium Nitrate (AN). J. Therm. Anal. Calorim. 2015, 122(2): 595-600.
  • [40] Xu, Z.; Wang, Q.; Zhu, X.; Fu, X. Thermal Stability of Ammonium Nitrate in High-temperature Coal Seam. J. Therm. Anal. Calorim. 2017, online.
  • [41] da Cunha, M. C. P. M.; Weber, M. I.; Nart, F. C. On the Adsorption and Reduction of NO3 − Ions at Au and Pt Electrodes Studied by in situ FTIR Spectroscopy. J. Electroanal. Chem. 1996, 414(2): 163-170.
  • [42] Oxley, J. C.; Smith, J. L.; Rogers, E.; Yu, M. Ammonium Nitrate: Thermal Stability and Explosivity Modifiers. Thermochim. Acta 2002, 384(1): 23-45.
  • [43] Oxley, J. C.; Smith, J. L.; Wang, W. Compatibility of Ammonium Nitrate with Monomolecular Explosives. 2. Nitroarenes. J. Phys. Chem. 1994, 98(14): 3901-3907.
  • [44] Kijlstra, W. S.; Brands, D. S.; Poels, E. K.; Bliek, A. Mechanism of the Selective Catalytic Reduction of NO by NH3 over MnOx/Al2O3. J. Catal. 1997, 171(1): 208-218.
  • [45] Kijlstra, W. S.; Brands, D. S.; Poels, E. K.; Bliek, A. Mechanism of the Selective Catalytic Reduction of NO by NH3 over MnOx/Al2O3. J. Catal. 1997, 171(1): 219-230.
  • [46] Zhan, S.; Zhu, D.; Qiu, M.; Yu, H.; Li, Y. Highly Efficient Removal of NO with Ordered Mesoporous Manganese Oxide at Low Temperature. RSC Adv. 2015, 5(37): 29353-29361.
  • [47] Yang, Sh.; Qi, F.; Xiong, Sh.; Dang, H.; Liao, Y.; Wong, P.; Li, J. MnOx Supported on Fe-Ti Spinel: A Novel Mn Based Low Temperature SCR Catalyst with a High N2 Selectivity. Appl. Catal. B: Environ. 2016, 181: 570-580.
  • [48] Yeom, Y. H.; Henao, J.; Li, M. J.; Sachtler, W. M.; Weitz, E. The Role of NO in the Mechanism of NOx Reduction with Ammonia over a BaNa-Y Catalyst. J. Catal. 2005, 231(1): 181-193.
  • [49] Suarez, S.; Martín, J. A.; Yates, M.; Avila, P.; Blanco, J. N2O Formation in the Selective Catalytic Reduction of NOx with NH3 at Low Temperature on CuOsupported Monolithic Catalysts. J. Catal. 2005, 229(1): 227-236.
  • [50] Mihai, O.; Widyastuti, C. R.; Andonova, S.; Kamasamudram, K.; Li, J.; Joshi, S. Y. The Effect of Cu-loading on Different Reactions Involved in NH3-SCR over Cu-BEA Catalysts. J. Catal. 2014, 311: 170-181.
  • [51] Tang, X.; Li, J.; Sun, L.; Hao, J. Origination of N2O from NO Reduction by NH3 over β-MnO2 and α-Mn2O3. Appl. Catal. B: Environ. 2010, 99: 156-162.
  • [52] Qi, G.; Yang, R. T.; Chang, R. MnOx-CeO2 Mixed Oxides Prepared by Co-precipitation for Selective Catalytic Reduction of NO with NH3 at Low Temperatures. Appl. Catal. B: Environ. 2004, 51(2): 93-106.
  • [53] Kijlstra, W. S.; Brands, D. S.; Poels, E. K.; Bliek, A. Kinetics of the Selective Catalytic Reduction of NO with NH3 over MnOx/Al2O3 Catalysts at Low Temperature. Catal. Today 1999, 50(1): 133-140.
  • [54] Yang, X.; Lu, Ch.; Qin, J.; Zhang, R.; Tang, H.; Song, H. A Facile One-step Hydrothermal Method to Produce Graphene-MoO3 Nanorod Bundle Composites. Mater. Lett. 2011, 65(15): 2341-2344.
  • [55] Yao, Y.; Xu, Ch.; Miao, Sh.; Sun, H.; Wang, S. One-pot Hydrothermal Synthesis of Co(OH)2 Nanoflakes on Graphene Sheets and Their Fast Catalytic Oxidation of Phenol in Liquid Phase. J. Colloid Interf. Sci. 2013, 402: 230-236.
  • [56] Shen, X.; Jiang, Ji. Zh.; Wu, J.; Zhou, H.; Zhu, G. Stable Aqueous Dispersions of Graphene Prepared with Hexamethylenetetramine as a Reductant. J. Colloid. Interf. Sci. 2011, 354(2): 493-497.
  • [57] Portehault, D.; Cassaignon, S.; Baudrin, E.; Jolivet, J. P. Morphology Control of Cryptomelane Type MnO2 Nano Wires by Soft Chemistry. Growth Mechanisms in Aqueous Medium. Chem. Mater. 2007, 19(22): 5410-5417.
  • [58] Sun, J.; Sun, Zh.; Wang, Q.; Ding, H.; Wang, T.; Jiang, C. Catalytic Effects of Inorganic Acids on the Decomposition of Ammonium Nitrate. J. Hazard. Mater. 2005, 127(1): 204-210.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45c84479-1fd8-4f7b-be8c-1277d3dff783
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.