PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stator winding fault diagnosis of induction motor operating under the field-oriented control with convolutional neural networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper deep neural networks are proposed to diagnose inter-turn short-circuits of induction motor stator windings operating under the Direct Field Oriented Control method. A convolutional neural network (CNN), trained with a Stochastic Gradient Descent with Momentum method is used. This kind of deep-trained neural network allows to significantly accelerate the diagnostic process compared to the traditional methods based on the Fast Fourier Transform as well as it does not require stationary operating conditions. To assess the effectiveness of the applied CNN-based detectors, the tests were carried out for variable load conditions and different values of the supply voltage frequency. Experimental results of the proposed induction motor fault detection system are presented and discussed.
Rocznik
Strony
1039--1048
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • Wrocław University of Science and Technology, Department of Electrical Machines, Drives and Measurements, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Science and Technology, Department of Electrical Machines, Drives and Measurements, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
  • Wrocław University of Science and Technology, Department of Electrical Machines, Drives and Measurements, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] W.T. Thomson and M. Fenger, “Current signature analysis to detect induction motor faults”, IEEE Ind. Appl. Mag. 7, 26‒34 (2001).
  • [2] C.T. Kowalski, “Diagnostics of drive systems with an induction motor using artificial intelligence methods”, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, Poland, (2013) [in Polish].
  • [3] N. Bessous, S. Sbaa, and A.C. Megherbi, “Mechanical fault detection in rotating electrical machines using MCSA-FFT and MCSA-DWT techniques”, Bull. Pol. Ac.: Tech. 67(3), 571‒582 (2019).
  • [4] F. Wilczyński, P. Strankowski , J. Guziński , M. Morawiec, and A. Lewicki, “Sensorless field oriented control for five-phase induction motors with third harmonic injection and fault insensitive feature”, Bull. Pol. Ac.: Tech. 67(2), 243‒262 (2019).
  • [5] S.M.A. Cruz and A.J.M. Cardoso, “Stator winding fault diagnosis in three-phase synchronous and asynchronous motors, by the extended Park’s vector approach”, IEEE Trans. Ind. Appl. 37, 1227–1233 (2001).
  • [6] M. Wolkiewicz and C.T. Kowalski, “Incipient stator fault detector based on neural networks and symmetrical components analysis for induction motor drives”, in 13th Selected Issues of Electrical Engineering and Electronics (WZEE), Rzeszów, Polnad, 1‒7 (2016).
  • [7] M. Skowron, M. Wolkiewicz, T. Orlowska-Kowalska, and C.T. Kowalski, “Effectiveness of Selected Neural Network Structures Based on Axial Flux Analysis in Stator and Rotor Winding Incipient Fault Detection of Inverter-fed Induction Motors”, Energies 12, 2392, 1‒20 (2019).
  • [8] V.N. Ghate and S.V. Dudul, “Optimal MLP neural network classifier for fault detection of three phase induction motor”, Expert Syst. Appl. 37(4), 3468–3481 (2010).
  • [9] C.T. Kowalski and M. Wolkiewicz, “Stator faults of the converter-fed induction motor using symmetrical components and neural network”, in 13th European Conf. on Power Electronics and Appl. (EPE), Barcelona, Spain, 1‒6 (2009).
  • [10] C.T. Kowalski and M. Kamiński, “Rotor fault detector of the converter-fed induction motor based on RBF neural network”, Bull. Pol. Ac.: Tech. 62(1), 69‒76 (2014).
  • [11] M. Skowron, M. Wolkiewicz, T. Orlowska-Kowalska, and C.T. Kowalski, “Application of Self-Organizing Neural Networks to Electrical Fault Classification in Induction Motors”, Appl. Sci. 9(4), 616 (2019).
  • [12] O. Sid, M. Menaa, S. Hamdani, O. Touhami, and R. Ibtiouen, “Self-organizing map approach for classification of electricals rotor faults in induction motors”, in 2nd Int. Conf. on Electric Power and Energy Conversion Systems (EPECS), Sharjah, United Arab Emirates, 1‒6 (2011).
  • [13] X.L. Ying and W.N. Lan, “Motor Fault Diagnosis Based on Wavelet Neural Network”, in 2nd Int. Conf. on Intelligent Computation Technology and Automation, Changsha, Hunan, China, 553‒555 (2009).
  • [14] G. Xu, M. Liu, Z. Jiang, W. Shen, and C. Huang, “Online Fault Diagnosis Method Based on Transfer Convolutional Neural Networks”, IEEE Trans. Instrum. Meas. 69(2), 509‒520 (2019).
  • [15] E. Principi, D. Rossetti, S. Squartini, and F. Piazza, “Unsupervised electric motor fault detection by using deep autoencoders”, IEEE-CAA J. Automatica Sin. 6(2), 441‒451 (2019).
  • [16] P. Chattopadhyay, N. Saha, C. Delpha, and J. Sil, “Deep Learning in Fault Diagnosis of Induction Motor Drives”, in Prognostics and System Health Management Conference (PHM-Chongqing), Chongqing, 1068‒1073 (2018).
  • [17] S. Shao, S. McAleer, R. Yan, and P. Baldi, “Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning”, IEEE Trans. Ind. Inform. 15(4), 2446‒2455 (2019).
  • [18] X. Ding and Q. He, “Energy-f luctuated multiscale feature learning with deep convnet for intelligent spindle bearing fault diagnosis”, IEEE Trans. Instrum. Meas. 66(8), 1926–1935 (2017).
  • [19] T. Junbo, L. Weining, A. Juneng, and W. Xueqian, “Fault diagnosis method study in roller bearing based on wavelet transform and stacked auto-encoder”, in IEEE 27th Control Decis. Conf., Qingdao, China, 4608–4613 (2015).
  • [20] S. Afrasiabi, M. Afrasiabi, B. Parang, and M. Mohammadi, “Real-Time Bearing Fault Diagnosis of Induction Motors with Accelerated Deep Learning Approach”, in 10th Int. Power Electronics, Drive Systems and Technologies Conf. (PEDSTC), Shiraz, Iran, 155‒159 (2019).
  • [21] L. Wen, X. Li, L. Gao, and Y. Zhang, “A new convolutional neural network-based data-driven fault diagnosis method”, IEEE Trans. Ind. Electron. 65(7), 5990–5998 (2018).
  • [22] T. Ince, S. Kiranyaz, L. Eren, M. Askar, and M. Gabbouj, “Real-time motor fault detection by 1-D convolutional neural networks”, IEEE Trans. Ind. Electron. 63(11), 7067–7075 (2016).
  • [23] M. Wolkiewicz, G. Tarchała, C.T. Kowalski, and T. Orłowska-Kowalska, “Stator faults monitoring and detection in vector controlled induction motor drives-comparative study”, Advanced Control of Electrical Drives and Power Electronic Converters. Studies in Systems, Decision and Control, vol. 75, pp. 169‒191, ed. Jacek Kabziński, Springer, 2017.
  • [24] B. Karg and S. Lucia, “Deep learning-based embedded mixed-integer model predictive control,” in Proc. 2018 European Control Conf., Limassol, 2075‒2080 (2018).
  • [25] J. Jin, V. Gokhale, A. Dundar, B. Krishnamurthy, B. Martini, and E. Culurciello, “An efficient implementation of deep convolutional neural networks on a mobile coprocessor,” in Proc. 2014 IEEE 57th Int. Midwest Symp. on Circuits and Systems, College Station, USA, 133‒136 (2014).
  • [26] STMicroelectronics, Artificial Intelligence (AI) software expansion for STM32Cube, STMicroelectronics Data Brief, 2019.
  • [27] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification with deep convolutional neural networks”, Advances in Neural Information Processing Systems, 25, 1106–1114 (2012).
  • [28] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift”, arXiv:1502.03167, (2015).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45c72760-0a68-4353-b4b1-365dabceff39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.