PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rational Liquid Cooling Systems of Internal Combustion Engines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The scheme of the cooling system is considered, which can be the basis for creating the most efficient cooling systems for IC engines of any purpose. It is assumed that the use of any other scheme is devoid of a rational basis. The scheme consists of two connected circulation circuits, in one of which the coolant flow rate is an order of magnitude less than in the second. The engine is included in a circuit with increased coolant flow. All heat exchangers are in the second circuit. Rules for the formation of such systems are formulated. The basis of the method for calculating such systems is considered. It is indicated that the flow rate through each heat exchanger must be determined by calculation to ensure the maximum efficiency of the cooling system. The considered scheme allows to provide the maximum possible depth of charge air cooling, if its temperature is not specified, or to ensure the minimum cost and compactness of the cooling system, if this temperature is known. The scheme allows regulating the temperatures of the cooling fluids of the system with all kinds of changes in the engine operating conditions and the ambient temperature.
Twórcy
  • Department of Internal Combustion Engines, Installations and Technical Operation, Admiral Makarov National University of Shipbuilding, 9, Heroiv Ukraine Ave., Mykolaiv, 54007, Ukraine
  • Department of Internal Combustion Engines, Installations and Technical Operation, Admiral Makarov National University of Shipbuilding, 9, Heroiv Ukraine Ave., Mykolaiv, 54007, Ukraine
autor
  • Department of Engineering Sciences, Faculty of Marine Engineering, Gdynia Maritime University, 81-87 Morska St., 81-225 Gdynia, Poland
Bibliografia
  • 1. Eitel J. Engine Cooling Systems and Cooling Components for Euro 5 Commercial Vehicles. ATZ worldwide. 2008; 110: 56–59.
  • 2. Application & Installation Guide Cooling Systems. CAT, Caterpillar, BUILT FOR IT; 2016.
  • 3. Ap N.-S., Jouanny P., Potier M., Genoist J. Ultimate Cooling System for New Generation of Vehicle. SAE Technical Paper Series. 2005.
  • 4. Cipollone R., Di Battista D., Gualtieri A. A novel engine cooling system with two circuits operating at different temperatures. Energy Conversion and Management. 2013; 75: 581–592.
  • 5. Ovcharenko S., Balagin O., Balagin D. Cooling system operation efficiency of locomotive diesel engine. IOP Conference Series: Earth and Environmental Science, Energy Management of Municipal Transportation Facilities and Transport – EMMFT 2017 10–13 April 2017, Far Eastern State Transport University, Russian Federation 2017, 90, 2–7.
  • 6. Nutt R. A., Poehlman R. F. Cooling System Requirements for Advanced Diesel Engines. SAE Technical Paper Series 820984; 1982.
  • 7. Sekar R.R. Trends in Diesel Engine Charge Air Cooling. SAE Transactions Series 820503. 1982; 91: 2102–2113.
  • 8. Mollenhauer K., Tschoeke H. Handbook of Diesel Engines. Springer-Verlag Berlin, Heidelberg; 2010: 291–338.
  • 9. Hua S., Huang R., Zhou P., Cheng W., Jia L. Experiments on the influence of cooling conditions on thermal balance and thermal state for a heavy-duty natural gas engine. Paper presented at the ASME 2015 Internal Combustion Engine Division Fall Technical Conference, Houston, Texas, USA 2015, 1015–1023.
  • 10. Ap N.S., Tarquis M. Innovative engine cooling systems comparison. SAE Technical Papers. 2005.
  • 11. Mathur G.D., Hara J., Iwasaki M., Meguriya Y. Development of an innovative energy efficient compact cooling system “SLIM”. SAE Technical Papers; 2012.
  • 12. Stanivuka T., Lalica B., Mikulicica J.Z., Sundovb M. Simulation Modelling of Marine Diesel Engine Cooling System. Transactions on Maritime Science. 2021; 10(1): 112–125.
  • 13. Kays W.M., London A.L. Compact Heat Exchangers. Mc Graw – Hill Book Company, New York; 1964.
  • 14. Eastwood J.C. Liquid-Coupled Indirect-Transfer Exchanger Application to the Diesel Engine. Journal of Engineering for Power. 1979; 101(4): 516–523.
  • 15. Lee C.M., Jeon T.Y., Jung B.G., Lee Y.C. Design of Energy Saving Controllers for Central Cooling Water Systems. Journal of Marine Science and Engineering. 2021; 9(513): 1–15.
  • 16. Jose J.T., Dunne J.F., Pirault J.-P., Long C. A. Spray evaporative cooling system design for automotive internal combustion engines. Paper presented at the ASME 2018 Internal Combustion Engine Division Fall Technical Conference, San Diego, California, USA 2018.
  • 17. Hamdy M., Askalany, A. A., Harby K., Kora N. An overview on adsorption cooling systems powered by waste heat from internal combustion engine. Renewable and Sustainable Energy Reviews. 2015; 51: 1223–1234.
  • 18. Galindo J., Dolz V., Tiseira A., Ponce-Mora A. Thermodynamic analysis and optimization of a jet ejector refrigeration cycle used to cool down the intake air in an IC engine. International Journal of Refrigeration. 2019; 103: 253–263.
  • 19. Zegenhagen M.T., Ziegler F. Feasibility analysis of an exhaust gas waste heat driven jet-ejector cooling system for charge air cooling of turbocharged gasoline engines. Applied Energy. 2015; 160: 221–230.
  • 20. Novella R., Dolz V., Martín J., Royo-Pascual L. Thermodynamic analysis of an absorption refrigeration system used to cool down the intake air in an Internal Combustion Engine. Applied Thermal Engineering. 2017; 111: 257–270.
  • 21. Ezgi C. Basic Design Methods of Heat Exchanger. Heat Exchangers – Design, Experiment and Simulation. 2017: 9–35.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45c3b062-e95e-4797-a2eb-3e74230c4e2c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.