PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Investigation of coupling effect between a unidirectional air waveguide and two cavities with one-way rotating state

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper we present an implementation of resonance coupling between a unidirectional air waveguide and two cavities with one-way rotating state in a two-dimensional dielectric photonic crystal and a magneto-optical photonic crystal. We theoretically calculate the dispersion curves of the line defect waveguide and the dispersion curves of waveguide-cavity interaction, respectively. Numerical simulations show that, via waveguide-cavity coupling, a series of interesting resonance phenomena can be generated in the system. By modifying direction of the applied external magnetic field, storing and discharging of photonic energy can be realized. Our work may provide a practical and useful guidance for optical communications.
Czasopismo
Rocznik
Strony
49--59
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
  • School of Mechanical Engineering, Jiangsu University, Zhenjiang Jiangsu 212013, China
autor
  • School of Mechanical Engineering, Jiangsu University, Zhenjiang Jiangsu 212013, China
autor
  • School of Mechanical Engineering, Jiangsu University, Zhenjiang Jiangsu 212013, China
autor
  • Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo Zhejiang 315211, China
autor
  • School of Mechanical Engineering, Jiangsu University, Zhenjiang Jiangsu 212013, China
autor
  • School of Mechanical Engineering, Jiangsu University, Zhenjiang Jiangsu 212013, China
Bibliografia
  • [1] YABLONOVITCH E., Inhibited spontaneous emission in solid-state physics and electronics, Physical Review Letters 58(20), 1987, pp. 2059–2062, DOI:10.1103/PhysRevLett.58.2059.
  • [2] JOHN S., Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters 58(23), 1987, pp. 2486–2489, DOI:10.1103/PhysRevLett.58.2486.
  • [3] KLITZING K.V., DORDA G., PEPPER M., New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Physical Review Letters 45(6), 1980, pp. 494–497, DOI:10.1103/PhysRevLett.45.494.
  • [4] LAUGHLIN R.B., Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations, Physical Review Letters 50(18), 1983, pp. 1395–1398, DOI:10.1103/PhysRevLett.50.1395.
  • [5] RAGHU S., HALDANE F.D.M., Analogs of quantum-Hall-effect edge states in photonic crystals, Physical Review A 78(3), 2008, article 033834, DOI:10.1103/PhysRevA.78.033834.
  • [6] HALDANE F.D.M., RAGHU S., Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry, Physical Review Letters 100(1), 2008, article 013904, DOI:10.1103/PhysRevLett.100.013904.
  • [7] WANG Z., CHONG Y., JOANNOPOULOS J, SOLJAČIĆ M., Observation of unidirectional backscattering-immune topological electromagnetic states, Nature 461(7265), 2009, pp. 772–775, DOI:10.1038/nature08293.
  • [8] YU Z., VERONIS G., WANG Z., FAN S., One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal, Physical Review Letters 100(2), 2008, article 023902, DOI:10.1103/PhysRevLett.100.023902.
  • [9] FUJITA J., LEVY M., OSGOOD Jr. R.M., WILKENS L., DÖTSCH H., Waveguide optical isolator based on Mach-Zehnder interferometer, Applied Physics Letters 76(16), 2000, pp. 2158–2160, DOI:10.1063/1.126284.
  • [10] TAKEDA H., JOHN S., Compact optical one-way waveguide isolators for photonic-band-gap microchips, Physical Review A 78(2), 2008, article 023804, DOI:10.1103/PhysRevA.78.023804.
  • [11] ZHANG L., YANG D., CHEN K., LI T., XIA S., Design of nonreciprocal waveguide devices based on two-dimensional magneto-optical photonic crystals, Optics and Laser Technology 50, 2013, pp. 195–201, DOI:10.1016/j.optlastec.2013.03.003.
  • [12] FU J.-X., LIAN J., LIU R.-J., GAN L., LI Z.-Y., Unidirectional channel-drop filter by one-way gyromagnetic photonic crystal waveguides, Applied Physics Letters 98(21), 2011, article 211104, DOI:10.1063/1.3593027.
  • [13] HUANG C., JIANG C., Nonreciprocal photonic crystal delay waveguide, Journal of the Optical Societyof America B 26(26), 2009, pp. 1954–1958, DOI:10.1364/JOSAB.26.001954.
  • [14] KIM S.-H., RYU H.-Y., PARK H.-G., KIM G.-H., CHOI Y.-S., LEE Y.-H., KIM J.-S., Two-dimensional photonic crystal hexagonal waveguide ring laser, Applied Physics Letters 81(10), 2002, pp. 2499–2501, DOI:10.1063/1.1510583.
  • [15] DINESH KUMAR V., SRINIVAS T., SELVARAJAN A., Investigation of ring resonators in photonic crystal circuits, Photonics and Nanostructures–Fundamentals and Applications 2(3), 2004, pp. 199–206, DOI:10.1016/j.photonics.2004.11.001.
  • [16] FANG Y., NI Z., HE H.-Q., JIANG T., Optical storage based on coupling of one-way edge modes and cavity modes, JETP Letters 102(4), 2015, pp. 254–259, DOI:10.1134/S0021364015160067.
  • [17] FANG Y., HE H.-Q., HU J., CHEN L., WEN Z., Flat and self-trapping photonic bands through coupling of two unidirectional edge modes, Physical Review A 91(3), 2015, article 033827, DOI:10.1103/PhysRevA.91.033827.
  • [18] FANG Y., HE H.Q., HU J., Transforming unidirectional edge waveguide into unidirectional air waveguide, IEEE Journal of Selected Topics in Quantum Electronics 22(2), 2016, pp. 293–301, DOI:10.1109/JSTQE.2015.2487879.
  • [19] FANG Y., NI Y., HE H., HU J., Effect of hybrid state of surface plasmon–polaritons, magnetic defect mode and optical Tamm state on nonreciprocal propagation, Optics Communications 320, 2014, pp. 99–104, DOI:10.1016/j.optcom.2014.01.043.
  • [20] KALITEEVSKI M., BRAND S., ABRAM R.A., IORSH I., KAVOKIN A.V., SHELYKH I.A., Hybrid states of Tamm plasmons and exciton polaritons, Applied Physics Letters 95(25), 2009, article 251108, DOI:10.1063/1.3266841.
  • [21] WANG Z., SHEN L., ZHANG X., WANG Y., YU Z., ZHENG X., Photonic crystal cavity with one-way rotating state and its coupling with photonic crystal waveguide, Journal of Applied Physics 110(4), 2011, article 043106, DOI:10.1063/1.3622676.
  • [22] LIU K., SHEN L., HE S., One-way edge mode in a gyromagnetic photonic crystal slab, Optics Letters 37(19), 2012, pp. 4110–4112, DOI:10.1364/OL.37.004110.
  • [23] SUN Y., KONG X., FANG Y., Competition and transformation of modes of unidirectional air waveguide, Optics Communications 376, 2016, pp. 115–117, DOI:10.1016/j.optcom.2016.05.038.
  • [24] FU J.-X., LIU R.-J., LI Z.-Y., Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces, Applied Physics Letters 97(4), 2010, article 041112, DOI:10.1063/1.3470873.
  • [25] WU L.-H., HU X., Scheme for achieving a topological photonic crystal by using dielectric material, Physical Review Letters 114(22), 2015, article 223901, DOI:10.1103/PhysRevLett.114.223901.
  • [26] YANG Y., XU Y.F., XU T., WANG H.-X., JIANG J.-H., HU X., HANG Z.H., Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials, Physical Review Letters 120(21), 2018, article 217401, DOI:10.1103/PhysRevLett.120.217401.
  • [27] ZHU X., WANG H.-X., XU C., LAI Y., JIANG J.-H., JOHN S., Topological transitions in continuously deformed photonic crystals, Physical Review B 97(8), 2018, article 085148, DOI:10.1103/PhysRevB.97.085148.
  • [28] HE L., GAO Y.F., JIANG Z., WANG L.S., ZHOU J., XUA X.F., A unidirectional air waveguide basing on coupling of two self-guiding edge modes, Optics and Laser Technology 108, 2018, pp. 265–272,DOI:10.1016/j.optlastec.2018.06.044.
  • [29] GAO Y.-F., JIANG Z., ZHANG L.-L., HE L., ZHAO J., Unidirectional propagation of coupled edge states in sandwich topological photonic crystals, Journal of Applied Physics 124(21), 2018, article 213107, DOI:10.1063/1.5047647.
  • [30] FANG Y., NI Z., XU Q., ZHOU J., WU Y., Transformation of unidirectional modes and split of channel through a cross waveguide, Optics Communications 366, 2016, pp. 13–16, DOI:10.1016/j.optcom.2015.12.052.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45be3de8-d35b-48cc-8fdd-5f53870f7526
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.