PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation of water cycle components in the Narmada River basin by forcing SWAT model with CFSR data

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, an attempt has been made through a hydrological model (SWAT – Soil and Water Assessment Tool) to simulate water cycle components over the Narmada river basin, one of the largest rivers in the Indian peninsula. The model was forced with observed as well as CFSR rainfall data to calibrate surface runoff simulated by the model. The spatial and temporal variability of the water cycle components were examined by running the SWAT model for 30 years (1984-2013) at a daily time-scale using CFSR precipitation, temperature, humidity, winds and solar radiation. It was found that there are large variations in hydrological parameters simulated by the model from sub-basin to sub-basin and year to year. During the monsoon seasons, surface runoff is maximum but during other seasons, almost no surface runoff is seen as there is almost no rain. Groundwater increase is seen after about 1 month of rainfall peaks in the basin. Evapotranspiration has two peaks, one in March-April and the other in August. Much less evaporation takes place in the basin in the month of May. These components (other than surface runoff) are also sensitive to climatic forcing (winds, relative humidity and solar radiation in addition to temperature and rainfall) applied. Evapotranspiration increases when all the climatic parameters are used, which then reduces the water availability on the surface for percolation and groundwater recharge. However, rainfall is the key parameter which decides the hydrology in the Narmada basin. The SWAT model has been able to compute water balance at basin and sub-basin scales.
Słowa kluczowe
Twórcy
  • National Center for Medium Range Weather Forecasting, Ministry of Earth Sciences, A-50, Sector-62, NOIDA, UP, Pin: 201 309, India
autor
  • National Center for Medium Range Weather Forecasting, Ministry of Earth Sciences, A-50, Sector-62, NOIDA, UP, Pin: 201 309, India
Bibliografia
  • 1. Abbaspour K.C., Yang J., Maximov I., Siber R., Bogner K., Mieleitner J., Zobrist J., Srinivasan R., 2007, Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT, Journal of Hydrology, 333 (2-4), 413-430, DOI: 10.1016/j.jhydrol.2006.09.014
  • 2. Adeogun A.G., Sule B.F., Salami A.W., Daramola M.O., 2014, Validation of SWAT model for prediction of water yield and water balance: case study of upstream catchment of Jebba dam in Nigeria, International Journal of Mathematical, Computational, Physical and Computer Engineering, 8 (2), 264-270
  • 3. Allan R.P., Liepert B.G., 2010, Anticipated changes in the global atmospheric water cycle, Environmental Research Letters, 5 (2), DOI: 10.1088/1748-9326/5/2/025201
  • 4. Allen R.G., Jensen M.E., Wright J.L., Burman R.D., 1989, Operational estimate of reference evapotranspiration, Agronomy Journal, 81, 650-662
  • 5. Allen R.G., Pereira L.S., Raes D., Smith M., 1998, Crop evapotranspiration – Guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper, 56, FAO, Rome, Italy, available at http://www.fao.org/docrep/X0490E/ X0490E00.htm (data access 22.08.2017)
  • 6. Arnold J.G., Srinivasan R., Muttiah R.S., Williams J.R., 1998, Large-area hydrologic modeling and assessment: Part I. Model development, Journal of the American Water Resources Association, 34 (1), 73-89, DOI: 10.1111/j.1752- 1688.1998.tb05961.x
  • 7. Bastidas L.A., Gupta H.V., Hsu K.-L.,Sorooshian S., 2003, Parameter, structure and model performance evaluation for land-surface schemes, [in:] Calibration of watershed models, Q. Duan, H.V. Gupta, S. Sorooshian, A. Rousseau, R. Turcotte (eds.), American Geophysical Union, Washington, D.C., DOI: 10.1029/WS006p0229
  • 8. Brutsaert W., Parlange M.B., 1998, Hydrologic cycle explains the evaporation paradox, Nature, 396, 30, DOI: 10.1038/23845
  • 9. Chung W.H.,. Wang I.T, Wang R.Y., 2010, Theory-based SCS-CN method and its applications, Journal of Hydrologic Engineering, 15 (12), 1045-1058, DOI: 10.1061/(ASCE) HE.1943-5584.0000281
  • 10. Earls J., Dixon B., 2008, A comparison of SWAT model-predicted potential evapotranspiration using real and modeled meteorological data, Vadose Zone Journal, 7 (2), 570-580
  • 11. Fontaine T.A., Cruickshank T.S, Arnold J.G., Hotchkiss R.H., 2002, Development of a snowfall-snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT), Journal of Hydrology, 262 (1-4), 209-223, DOI: 10.1016/S0022-1694(02)00029-X
  • 12. Geetha K.,. Mishra S.K, Eldho T.I., Rastogi A.K., Pandey R.P., 2007, Modification to SCS-CN method for long-term hydrologic simulation, Journal of Irrigation and Drainage Engineering, 133 (5), 475-489, DOI: 10.1061/(ASCE)0733- 9437(2007)133:5(475)
  • 13. Green W.H., Ampt G., 1911, Studies of soil physics. Part I: The flow of air and water through soils, Journal of Agricultural Science, 4 (1), 1-24, DOI: 10.1017/S0021859600001441
  • 14. Hargreaves G.L., Hargreaves G.H., Riley J.P., 1985, Agricultural benefits for Senegal River basin, Journal of Irrigation and Drainage Engineering, 111 (2), 113-124, DOI: 10.1061/ (ASCE)0733-9437(1985)111:2(113)
  • 15. Huntington T.G., 2006, Evidence for intensification of the global water cycle: review and synthesis, Journal of Hydrology, 319 (1-4), 83-95, DOI: 10.1016/j.jhydrol.2005.07.003
  • 16. IPCC, 2001, Climate change 2001: Synthesis report, Contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change, R. Watson and the Core Writing Team (eds.), Cambridge University Press, 148 pp.
  • 17. Jain S.K., Storm B., Bathurst J.C., Refsgaard J.C., Singh R.D., 1992, Application of the SHE to catchments in India. Part 2. Field experiments and simulation studies with the SHE on the Kolar subcatchment of the Narmada River, Journal of Hydrology, 140 (1-4), 25-47, DOI: 10.1016/0022-1694(92)90233-L
  • 18. Karl T.R., Melillo J.M., Peterson T.C. (eds.), 2009, Global Climate Change Impacts in the United States, A State of Knowledge from the U.S. Global Change Research Program, Cambridge University Press, New York, NY, USA, 188 pp., available at https://downloads.globalchange.gov/usimpacts/ pdfs/climate-impacts-report.pdf (data access 22.08.2017)
  • 19. Kleinn J., Frei C., Gurtz J., Lüthi D., Vidale P.L., Schär C., 2005, Hydrologic simulations in the Rhine basin driven by a regional climate model, Journal of Geophysical Research, 110 (D4), DOI: 10.1029/2004JD005143
  • 20. Liepert B.G., Previdi M., 2009, Do models and observations disagree on the rainfall response to global warming?, Journal of Climate, 22, 3156-3166, DOI: 10.1175/2008JCLI2472.1
  • 21. Manaswi C.M., Thawait A.K., 2014, Application of soil and water assessment tool for runoff modeling of Karam River basin in Madhya Pradesh, International Journal of Scientific Engineering and Technology, 3 (5), 529-532
  • 22. Mehran A., AghaKouchak A., Phillips T.J., 2014, Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations, Journal Geophysical Research. Atmospheres, 119 (4), 1695-1707, DOI: 10.1002/2013JD021152
  • 23. Miller S.N., Kepner W.G., Mehaffey M.H, Hernandez M., Miller R.C., Goodrich D.C., Devonald F.K., Heggem D.T., Miller W.P., 2002, Integrating landscape assessment and hydrologic modeling for Land Cover change analysis, Journal of the American Water Resources Association, 38 (4), 915-929, DOI: 10.1111/j.1752-1688.2002.tb05534.x
  • 24. Monteith J.L., 1965, Evaporation and environment, [in:] The State and Movement of Water in Living Organisms, Symposia of the Society for Experimental Biology, G.E. Fogg (ed.), Cambridge University Press, XIX, 205-23
  • 25. Music B., Caya D., 2009, Investigation of the sensitivity of water cycle components simulated by the Canadian regional climate model to the land surface parameterization, the lateral boundary data, and the internal variability, Journal of Hydrometeorology, 10, 3-21, DOI: 10.1175/2008JHM979.1
  • 26. Nash J.E., Sutcliffe J.V., 1970, River flow forecasting through conceptual models. Part I: A discussion of principles, Journal of Hydrology, 10 (3), 282-290, DOI: 10.1016/0022- 1694(70)90255-6
  • 27. Nearing M., Liu B., Risse L., Zhang X., 1996, Curve number and Green-Ampt effective hydraulic conductivities, Journal of the American Water Resources Association, 32 (1), 125-136, DOI: 10.1111/j.1752-1688.1996.tb03440.x
  • 28. Netnapa Pongpetch, Pongthep Suwanwaree, 2013, Simulation of stream flow for Upper Lam Takongsub-Watershed using SWAT model, International Journal of Environmental Science and Development, 4 (3), 261-263, DOI: 10.7763/IJESD.2013. V4.349
  • 29. Notter B., Hurni H., Wiesmann U., Abbaspour K.C., 2012, Modelling water provision as an ecosystem service in a large East African river basin, Hydrology and Earth System Sciences, 16, 69-86, DOI: 10.5194/hess-16-69-2012
  • 30. Peterson T.C., Golubev V.S., Groisman P.Y., 1995, Evaporation losing its strength, Nature, 377, 687-688, DOI: 10.1038/377687b0
  • 31. Priestley C.H.B., Taylor R.J., 1972, On the assessment of surface heat flux and evaporation using large-scale parameters, Monthly Weather Review, 100 (2), 81-92, DOI: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  • 32. Saha S., Moorthi S., Pan H.-L., Wu X., Wang J., Nadiga S., Tripp P., Kistler R., Woollen J., Behringer D., Liu H., Stokes D., Grumbine R., Gayno G., Wang J., Hou Y.-T., Chuang H.-Y., Juang H.-M., Sela J., Iredell M., Treadon R., Kleist D., Van Delst P., Keyser D., Derber J., Ek M., Meng J., Wei H., Yang R., Lord S., van den Dool H., Kumar A., Wang W., Long C., Chelliah M., Xue Y., Huang B., Schemm J.-K., Ebisuzaki W., Lin R., Xie P., Chen M., Zhou S., Higgins W., Zou C.-Z., Liu Q., Chen Y., Han Y., Cucurull L., Reynolds R.W., Rutledge G., Goldberg M., 2010, The NCEP Climate Forecast System Reanalysis, Bulletin of the American Meteorological Society, 1015-1057, DOI: 10.1175/2010BAMS3001.1.
  • 33. Sharma R.K., Goswami S.B., Tiwari S., Kar S.C., 2015, Evaluation of daily rainfall-runoff simulations in Narmada River basin, International Journal of Earth Sciences and Engineering, 8 (3), 1123-1132
  • 34. Siebert S., Burke J., Faures J.M., Frenken K., Hoogeveen J., Dӧll P., Portmann F.T., 2010, Groundwater use for irrigation – a global inventory, Hydrology and Earth System Sciences, 14, 1863-1880, DOI: 10.5194/hess-14-1863-2010
  • 35. Spruill C.A., Workman S.R., Taraba J.L., 2000, Simulation of daily and monthly stream discharge from small watersheds using the SWAT model, Transactions of the ASAE, 43 (6), 1431-1439, DOI: 10.13031/2013.3041
  • 36. Stehr A., Debels P., Romero F., Alcayaga H., 2008, Hydrological modelling with SWAT under conditions of limited data availability: evaluation of results from a Chilean case study, Hydrological Sciences Journal, 53 (3), 588-601, DOI: 10.1623/hysj.53.3.588
  • 37. Vazquez-Amabile G.G., Engel B.A., 2005, Use of SWAT to compute groundwater table depth and stream flow in the Muscatatuck River watershed, Transactions of the ASAE, 48 (3), 991-1003
  • 38. Wada Y., Van Beek L.P.H., Van Kempen C.M., Reckman J.W.T.M., Vasak S., Bierkens M.F.P., 2010, Global depletion of groundwater resources, Geophysical Research Letters, 37 (20), DOI: 10.1029/2010GL044571
  • 39. Waliser D., Seo K.-W., Schubert S., Njoku E., 2007, Global water cycle agreement in the climate models assessed in the IPCC AR4, Geophysical Research Letters, 34 (16), DOI: 10.1029/2007GL030675
  • 40. Wang X., Melesse A.M., Yang W., 2006, Influences of potential evapotranspiration estimation methods on SWAT’s hydrologic simulation in a Northwestern Minnesota watershed, Transactions of the American Society of Agricultural and Biological Engineers, 49, 1755-1771, DOI: 10.13031/2013.22297
  • 41. Xu C.-Y., Singh V.P., 2005, Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions, Journal of Hydrology, 308 (1-4), 105-121, DOI: 10.1016/j.jhydrol.2004.10.024
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45af750f-71c3-47b0-b219-a06b098be511
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.