PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mixing characteristics of the subarctic front in the Kuroshio-Oyashio confluence region

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper analyzes the mixing characteristics of the Subarctic Front (SAF) in the Kuroshio-Oyashio Confluence Region based on temperature, salinity, and current data obtained from surveys and remote sensing in June 2016. The frontal zone of the observed area is at 145°-151°E, 38°-41°N. The front is distributed between 25.5-26.7 σ0 in a band pattern inclined from north to south and is deeper in the south. The region shallower than 200 m and distributed along the isopycnal of 25.9-26.1σ0 has thestrongest horizontal temperature andsalinity gradients, andthe largest of the former can reach over 0.7°C/km. Diapycnal mixing of the SAF ismainly turbulent; it is stronger in the north than in the south. The region with stronger turbulence (Kρ > 10-3.5 m2/s) is distributed mainly in water layers within and under the front (26.1-26.7σ0), showing that the SAF is shallower in the north and deeper in the south along the front. Symmetric instability may be the main factor causing strong turbulent mixing in the frontal zone.Double diffusion mixing is stronger in the south than in the north; the region with stronger double diffusion (K0 > 10-4.5 m2/s) is distributed mainly in water layers within and above the front (25-26.5σ0) on the southern side of the SAF. These water layers are dominated mainly by „salt-fingering'' double diffusion, with only a few water layers dominated by „diffusive layering'' double diffusion mixing in middle and lower waters deeper than 300 m.
Czasopismo
Rocznik
Strony
103--113
Opis fizyczny
Bibliogr. 47 poz., tab., wykr.
Twórcy
autor
  • Army of PLA, Beijing, China
autor
  • College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, China
autor
  • College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, China
autor
  • Army of PLA, Beijing, China
autor
  • Army of PLA, Beihai, China
autor
  • College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, China
Bibliografia
  • [1] D'Asaro, E., Lee, C., Rainville, L., Harcourt, L., Thomas, L., 2011. Enhanced turbulence and energy dissipation at ocean fronts. Science 332 (6027), 318-322.
  • [2] Dewey, R. K., Moum, J. N., 1990. Enhancement of fronts by vertical mixing. J. Geophys. Res. 95 (C6), 9433-9445, http://dx.doi.org/10.1029/JC095iC06p09433.
  • [3] Dillon, T. M., 1982. Vertical overturns: a comparison of Thorpe and Ozmidov length scales. J. Geophys. Res.-Oceans 87 (C12), 9601-9613, http://dx.doi.org/10.1029/JC087iC12p09601.
  • [4] Fedorov, K. N., 1988. Layer thicknesses and effective diffusivities in “diffusive” thermohaline convection in the ocean. Elsevier Oceanogr. Series vol. 4, 471-479.
  • [5] Galbraith, P. S., Kelley, D. E., 1996. Identifying overturns in CTD profiles. J. Atmos. Ocean. Tech. 13 (3), 688-702, http://dx.doi.org/10.1175/1520-0426(1996)013%3C0688:IOICP%3E2.0.CO;2.
  • [6] Gille, S. T., Lombrozo, A., Sprintall, J., Stephenson, G., Scarlet, R., 2009. Anomalous spiking in spectra of XCTD temperature profiles. J. Atmos. Ocean. Tech. 26 (6), 1157-1164, http://dx.doi.org/10.1175/2009JTECHO668.1.
  • [7] Hasunuma, K., 1978. Formation of the intermediate salinity minimum in the northwestern Pacific Ocean. Bull. Ocean Res. Inst. (Univ. Tokyo) vol. 9, 1-47.
  • [8] Hoskins, B. J., 1974. The role of potential vorticity in symmetric stability and instability. Q. J. R. Meteorol. Soc. 100 (425), 480-482, http://dx.doi.org/10.1002/qj.49710042520.
  • [9] Itoh, S., Yasuda, I., 2010. Characteristics of mesoscale eddies in the Kuroshio-Oyashio Extension region detected from the distribution of the sea surface height anomaly. J. Phys. Oceanogr. 40, 1018-1034, http://dx.doi.org/10.1175/2009JPO4265.1.
  • [10] Jing, Z., Qi, Y., Fox-Kemper, B., Du, Y., Lian, S., 2016. Seasonal thermal fronts on the northern South China Sea shelf: Satellite measurements and three repeated field surveys. J. Geophys. Res.-Oceans 121 (3), 1914-1930, http://dx.doi.org/10.1002/2015JC011222.
  • [11] Jing, Z., Wu, L., Ma, X., 2017. Energy exchange between the mesoscale oceanic eddies and wind-forced near-inertial oscillations. J. Phys. Oceanogr. 47 (3), 721-733, http://dx.doi.org/10.1175/JPO-D-16-0214.1.
  • [12] Kelley, D. E., Fernando, H. J. S., Gargett, A. E., Tanny, J., Özsoy, E., 2003. The diffusive regime of double-diffusive convection. Prog. Oceanogr. 56 (3), 461-481, http://dx.doi.org/10.1016/S0079-6611(03)00026-0.
  • [13] Kitano, K., 1974. Some properties of the warm eddies generated in the confluence zone of the Kuroshio and Oyashio currents. J. Phys. Oceanogr. 5 (5), 245-252, http://dx.doi.org/10.1175/1520-0485(1975)005%3C0245:SPOTWE%3E2.0.CO;2.
  • [14] Kunze, E., 1985. Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr. 15 (5), 544-565, http://dx.doi.org/10.1175/1520-0485(1985)015%3C0544:NIWPIG%3E2.0.CO;2.
  • [15] Kwon, Y.-O., Deser, C., 2007. North Pacific decadal variability in the Community Climate System Model version 2. J. Climate 20, 2416-2433, http://dx.doi.org/10.1175/JCLI4103.1.
  • [16] MacKinnon, J. A., Gregg, M. C., 2003a. Shear and baroclinic energy flux on the summer New England shelf. J. Phys. Oceanogr. 33 (7), 1462-1475, http://dx.doi.org/10.1175/15200485(2003)033%3C1462:SA-BEFO%3E2.0.CO;2.
  • [17] Nagai, T., Tandon, A., Yamazaki, H., Doubell, M. J., 2009. Evidence of enhanced turbulent dissipation in the frontogenetic Kuroshio Front thermocline. Geophys. Res. Lett. 36 (12), 1179, http://dx.doi.org/10.1029/2009GL038832.
  • [18] Nagai, T., Tandon, A., Yamazaki, H., Doubell, M. J., Gallager, S., 2012. Direct observations of microscale turbulence and thermohaline structure in the Kuroshio Front. J. Geophys. Res.-Oceans 117 (C8), C08013, http://dx.doi.org/10.1029/2011JC00722.
  • [19] Nagai, T., Inoue, R., Tandon, A., Yamazaki, H., 2015a. Evidence of enhanced double-diffusive convection below the main stream of the Kuroshio Extension. J. Geophys. Res.-Oceans 120 (12), 8402-8421, http://dx.doi.org/10.1002/2015JC011288.
  • [20] Nagai, T., Tandon, A., Kunze, E., Mahadevan, A., 2015b. Spontaneous generation of near-inertial waves by the Kuroshio Front. J. Phys. Oceanogr. 45 (9), 2381-2406, http://dx.doi.org/10.1175/JPO-D-14-0086.1.
  • [21] Nakamura, H., Kazmin, A. S., 2003. Decadal changes in the North Pacific oceanic frontal zones as revealed in ship and satellite observations. J. Geophys. Res.-Oceans 108 (C3), 371-376, http://dx.doi.org/10.1029/1999JC000085.
  • [22] Nakamura, H., Lin, G., Yamagata, T., 1997. Decadal climate variability in the North Pacific during the recent decades. Bull. Am. Meteorol. Soc. 78 (10), 2215-2225, http://dx.doi.org/10.1175/1520-0477(1997)078%3C2215:DCVITN%3E2.0.CO;2.
  • [23] Nakamura, H., Miyasaka, T., Kosaka, Y., Takaya, K., Honda, M., 2010. Northern hemisphere extratropical tropospheric planetary waves and their low-frequency variability: their vertical structure and interaction with transient eddies and surface thermal contrasts. Geophys. Monogr. Series 189, 149-179, http://dx.doi.org/10.1029/2008GM000789.
  • [24] Osborn, T. R., 1980. Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr. 10 (1), 83-89, http://dx.doi.org/10.1175/15200485(1980)010%3C0083:EOTLRO%3-E2.0.CO;2.
  • [25] Schmitt, R. W., Perkins, H., Boyd, J. D., Stalcup, M. C., 1987. C-SALT: an investigation of the thermohaline staircase in the western tropical North Atlantic. Deep Sea Res. Part A. Oceanogr. Res. Pap. 34 (10), 1655-1665, http://dx.doi.org/10.1016/0198-0149(87)90014-8.
  • [26] Pollard, R. T., Regier, L. A., 1992. Vorticity and vertical circulation at an ocean front. J. Phys. Oceanogr. 22 (6), 609-625, http://dx.doi.org/10.1175/15200485(1992)022%3C0609:VAVCAA%3-E2.0.CO;2.
  • [27] Radko, T., Bulters, A., Flanagan, J. D., Campin, J. M., 2014. Double-diffusive recipes. Part I: Large-scale dynamics of thermohaline staircases. J. Phys. Oceanogr. 44 (5), 1269-1284, http://dx.doi.org/10.1175/JPO-D-13-0155.1.
  • [28] Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., Schlax, M. G., 2007. Daily high-resolution-blended analyses for sea surface temperature. J. Climate 20 (22), 5473-5496, http://dx.doi.org/10.1175/2007JCLI1824.1.
  • [29] Ruddick, B., 1983. A practical indicator of the stability of the water column to double-diffusive activity. Deep-Sea Res. 30 (10), 1105-1107, http://dx.doi.org/10.1016/0198-0149(83)90063-8.
  • [30] Ruddick, B., Kerr, O., 2003. Oceanic thermohaline intrusions: theory. Progr. Oceanogr. 56 (3), 483-497, http://dx.doi.org/10.1016/S0079-6611(03)00029-6.
  • [31] Ruddick, B., Richards, K., 2003. Oceanic thermohaline intrusions: observations. Progr. Oceanogr. 56 (3), 499-527, http://dx.doi.org/10.1016/S0079-6611(03)00028-4.
  • [32] Rudnick, D. L., 1996. Intensive surveys of the Azores Front: II. Inferring the geostrophic and vertical velocity fields. J. Geophys. Res.-Oceans 101 (C7), 16291-16303, http://dx.doi.org/10.1029/96JC01144.
  • [33] Sampe, T., Nakamura, H., Goto, A., Ohfuchi, W., 2010. Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet. J. Climate 23, 1793-1814, http://dx.doi.org/10.1175/2009JCLI3163.1.
  • [34] Stern, M. E., 1967. Lateral mixing of water masses. Deep-Sea Res. 14 (6), 747-753, http://dx.doi.org/10.1016/S0011-7471(67)80011-1.
  • [35] Stern, M. E., Turner, J. S., 1969. Salt fingers and convecting layers. Deep-Sea Res. 16 (5), 497-511, http://dx.doi.org/10.1016/0011-7471(69)90038-2.
  • [36] Stone, P. H., 1966. On non-geostrophic baroclinic stability. J. Atmos. Sci. 23 (4), 390-400, http://dx.doi.org/10.1175/1520-0469(1966)023%3C0390:ONGBS%3E2.0.CO;2.
  • [37] Sugimoto, S., Hanawa, K., 2011. Roles of SST anomalies on the wintertime turbulent heat fluxes in the Kuroshio-Oyashio Confluence Region: influences of warm eddies detached from the Kuroshio Extension. J. Climate 24 (24), 6551-6561, http://dx.doi.org/10.1175/2011JCLI4023.1.
  • [38] Sugimoto, S., Kobayashi, N., Hanawa, K., 2014. Quasi-decadal variation in intensity of the western part of the winter subarctic SST front in the western north pacific: the influence of Kuroshio extension path state. J. Phys. Oceanogr. 44 (10), 2753-2762, http://dx.doi.org/10.1175/JPO-D-13-0265.1.
  • [39] Taguchi, B., Nakamura, H., Nonaka, M., Xie, S.-P., 2009. Influences of the Kuroshio/Oyashio Extensions on air-sea heat exchanges and storm-track activity as revealed in regional atmospheric model simulations for the 2003/04 cold season. J. Climate 22, 6536-6560, http://dx.doi.org/10.1175/2009JCLI2910.1.
  • [40] Talley, L. D., 1993. Distribution and formation of North Pacific Intermediate Water. J. Phys. Oceanogr. 23 (3), 517-538, http://dx.doi.org/10.1175/15200485(1993)023%3C0517:DAFONP%3E-2.0.CO;2.
  • [41] Thomas, L. N., Shakespeare, C. J., 2015. A new mechanism for mode water formation involving cabbeling and frontogenetic strain at thermohaline fronts. J. Phys. Oceanogr. 45 (9), 2444-2456, http://dx.doi.org/10.1175/JPO-D-15-0007.1.
  • [42] Thorpe, S. A., 2005. The Turbulent Ocean. Cambridge Univ. Press, Cambridge, UK, 426 pp.
  • [43] Uda, M., 1963. Oceanography of the subarctic Pacific Ocean. J. Fish. Res. Board. Canada 20 (1), 119-179, http://dx.doi.org/10.1139/f63-011.
  • [44] Wang, F., Li, Y., 2012. Thermohaline finestructure observed near the northern Philippine coast. Chin. J. Oceanol. Limnol. 30 (6), 1033-1044, http://dx.doi.org/10.1007/s00343-012-1246-0.
  • [45] Whitt, D. B., Thomas, L. N., 2013. Near-inertial waves in strongly baroclinic currents. J Phys. Oceanogr. 43 (4), 706-725, http://dx.doi.org/10.1175/jpo-d-12-0132.1.
  • [46] Wunsch, C., Ferrari, R., 2004. Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36, 281-314, http://dx.doi.org/10.1146/annurev.fluid.36.050802.122121.
  • [47] Yuan, X., Talley, L. D., 1996. The subarctic frontal zone in the North Pacific: characteristics of frontal structure from climatological data and synoptic surveys. J. Geophys. Res.-Oceans 101 (C7), 16491-16508, http://dx.doi.org/10.1029/96JC01249.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45a65189-0f82-4249-8a0a-66eb430f43c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.