PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Analysis of CFRP Application in the Construction of Rail Vehicles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this article is to provide crucial information on CFRP composites and examples of their use in rail vehicle construction. The first part outlines the key characteristics of CFRP composites and compares their properties with conventional structural materials. Implementation examples of this group of composites for structural components of rail vehicles are discussed further. The final section of the article analyses the reasons for introducing composites of this type into the engineering practice of railways.
Rocznik
Tom
Strony
105--113
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
  • Poznań University of Technology, Transport Institute
Bibliografia
  • 1. Dobrzański L.A.: Podstawy nauki o materiałach i metaloznawstwo [Fundamentals of materials science and metallurgy], Wydawnictwo Naukowo-Techniczne, 2002.
  • 2. Fejdyś M., Łandwijt M.: Włókna techniczne wzmacniające materiały kompozytowe [Technical fibers reinforcing composite materials], Techniczne Wyroby Włókiennicze, 2010, nr 18, s. 12-22, http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-LOD7-0030-0001/c/httpwww_moratex_euplikitww201012tww20101-2art1.pdf.
  • 3. Chung D.D.L.: Carbon composites: Composites with carbon fibers, nanofibers, and nanotubes: Second edition, Butterworth-Heinemann, 2016.
  • 4. Sorci R.: Innovative Running Gear Solutions for New Dependable, Sustainable, Intelligent and Comfortable Rail Vehicles. D2.3 Report on novel materials and manufacturing concept solutions, 2019.
  • 5. Ghosh A.K.,. Dwivedi M: Processability of Polymeric Composites, Springer, 2020. https://doi.org/10.1007/978-81-322-3933-8.
  • 6. Oczoś K.E.: Kompozyty włókniste - właściwości, zastosowanie, obróbka ubytkowa [Fibrous composites - properties, application, waste treatment], Mechanik, 2008, z. 81 s. 579-592.
  • 7. Imad Shakir Abbood et.al.: Jasim, Properties evaluation of fiber reinforced polymers and their constituent materials used in structures, Materials Today: Proceedings. 43 (2021) 1003-1008. https://doi.org/10.1016/j.matpr.2020.07.636.
  • 8. Material Properties of S355 Steel - An Overview, Meadinfo, 2015. https://www.meadinfo.org/2015/08/s355-steel-properties.html, [accessed February 22, 2021].
  • 9. Aluminum 6082-T6, Matweb, http://www.matweb.com/search/datasheet.aspx?matguid=fad29be6e64d4e95a241690f1f6e1eb7&ckck=1 [accessed February 20, 2021].
  • 10. J.-M. Im, K.-B. Shin: Technology of Light Weight Railway Vehicle using Composite Materials, International Journal of Railway, 12 (2019) 23-27, https://doi.org/10.7782/IJR.2019.12.2.023.
  • 11. Mistry P., Johnson M., Galappaththi U.: Selection and ranking of rail vehicle components for optimal lightweighting using composite materials, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, No. 235 pp. 390-402. https://doi.org/10.1177/0954409720925685.
  • 12. Suzuki Y.: Railway Industry, in: Handbook of Adhesion Technology, Springer, Berlin, 2011, https://doi.org/10.1007/978-3-642-01169-6.
  • 13. Kim S. et.al: Analysis of the Composite Structure of Tilting Train Express (TTX ), Proceedings of the KSR Conference, 2005, s. 657-662.
  • 14. S.I. Seo, J.S. Kim, S.H. Cho: Development of a hybrid composite bodyshell for tilting trains, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 222 (2008) 1-13. https://doi.org/10.1243/09544097JRRT96.
  • 15. Wennberg D.: Light-weighting Methodology in Rail Vehicle Design through Introduction of Load Carrying Sandwich Panels, 2011, www.kth.se/en/sci/institutioner/ave/avd/rail%5Cnwww.kth.se/en/sci/institutioner/ave/avd/rail.
  • 16. A train made of carbon-fiber-reinforced plastic components, JEC Composites. (2018). http://www.jeccomposites.com/knowledge/international-composites-news/train-made-carbon-fiber-reinforcedplastic-components, [accessed February 14, 2021].
  • 17. CG Rail, https://cgrail.de/, [accessed February 22, 2021].
  • 18. Siebel T.: Th e World’s First CFRP Rail Vehicle, Springer Professional, 2018, https://www.springerprofessional.de/en/production---production-technology/engineering---development/the-world-sfirst-cfrp-rail-vehicle/16135270, [accessed February 14, 2021].
  • 19. Wuhan Optics Valley Tram, FORDYNO. https:// www.fordyno.com/wuhan-optics-valley, [accessed February 14, 2021].
  • 20. New generation of carbon-fiber tramcar meets public in NE China, CGTN. (2018). https://news.cgtn.com/news/3d3d674d3251444d7a457a6333566d54/share_p.html, [accessed February 14, 2021)].
  • 21. Nishimura T., Taga Y., Ono T.: efWING ® - NewGeneration Railway Bogie, Kawasaki Technical Review, 2016, pp. 27-32.
  • 22. Nishimura T.: efWING - New-Generation Railway Bogie, Japanese Railway Enigneering, 2016, No. 194, pp. 13-14.
  • 23. Kawasaki Delivers CFRP efWING® Bogies to JR Shikoku, 2016, https://global.kawasaki.com/en/corp/newsroom/news/detail/?f=20160519_5864, [accessed February 20, 2021].
  • 24. Crosbee D., Rothwell E., Iwnicki S.: Developing a carbon fibre railway bogie for passenger trains, Global Railway Review, 2020, https://www.globalrailwayreview.com/article/102360/carbon-fibre-bogie-passenger-trains-irr/ [accessed February 10, 2021].
  • 25. Mason K.: Recycled carbon fiber on the rails, Composite World, 2019, https://www.compositesworld.com/articles/recycled-carbon-on-the-rails.
  • 26. Mistry P., Johnson M.: Innovative Running Gear Solutions for New Dependable, Sustainable, Intelligent and Comfortable Rail Vehicles D3.1 - Analysis of the state of the art for composite materials suitable for rail wheelsets and related manufacturing processes, 2020, pp. 1-59.
  • 27. Rungskunroch P., Kaewunruen S., Shen Z.J.: An improvement on the end-of-life of high-speed rail rolling stocks considering CFRP composite material replacement, Frontiers in Built Environment, 2019, No. 5 pp. 1-9, https://doi.org/10.3389/fbuil.2019.00089.
  • 28. Ulianov C., Önder A., Peng Q.: Analysis and selection of materials for the design of lightweight railway vehicles, IOP Conference Series: Materials Science and Engineering, 2018, No. 292, pp. 1-7, https://doi.org/10.1088/1757-899X/292/1/012072.
  • 29. Arifurrahman F., Budiman B.A., Aziz M.: On the Lightweight Structural Design for Electric Road and Railway Vehicles using Fiber Reinforced Polymer Composites - A Review, International Journal of Sustainable Transportation Technology, 2018, No. 1, pp. 21-29, https://doi.org/10.31427/IJSTT.2018.1.1.4.
  • 30. Finke S., Kominowski J., Motyl M.: The effect of the bogie frame stiffness on running properties of railve hicles [Wpływ sztywności ramy wózka na własności biegowe pojazdów szynowych], Pojazdy Szynowe, 2019, No. 2, s. 49-57.
  • 31. Romaniszyn Z.: Podwozia wózkowe pojazdów szynowych, Wydawnictwo Instytutu Pojazdów Szynowych Politechniki Krakowskiej, Kraków, 2010.
  • 32. Shama N. et.al.: Carbon Composites Are Becoming Competitive and Cost Effective, Infosys Limited, 2018, pp. 1-12, https://www.infosys.com/engineering-services/white-papers/Documents/carbon-composites-cost-eff ective.pdf.
  • 33. Garside M.: Global demand for carbon fiber from 2010 to 2022, Statista, 2018, https://www.statista.com/statistics/380538/projection-demand-forcarbon-fiber-globally/.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45a133aa-a971-45bc-94b7-d3411a1075c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.