PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experience of Suckling Perfection of Secondary Clarifier of Aeration Station in Almaty, Kazakhstan

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the results of experimental studies pertaining to the suckling improvement of secondary clarifier in an aeration station in Almaty. According to the obtained research results, the work of secondary clarifiers was evaluated for the removal of suspended solids, concentration of returned sludge and sediment moisture. The technical specifications of aerations, secondary settling tanks and cesspool emptier in the aeration station of Almaty were defined. Additionally, it was shown that the use of the articulated sucker with movable scrapers can increase the efficiency of cleaning the bottom of the circular tanks. In this practical test, the proposed suckling radial settler in aeration station of Almaty during the year showed that the sucker reduces the costs for the installation and maintenance of cesspool emptier and has no damaging effects on the bottom of the sump.
Rocznik
Strony
210--218
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Kazakh National Research Technical University Named After K.I. Satpayev, Satpayev’s Street 22, Almaty, Kazakhstan
  • State Municipal Enterprise "Tospa Su", Shubazeva’s Str. 128, Alamty Region, Yhapek Batyr Village, Kazakhstan
  • Kazakh National Research Technical University Named After K.I. Satpayev, Satpayev’s Street 22, Almaty, Kazakhstan
Bibliografia
  • 1. Al-Bastaki N.M. 2004. Performance of advanced methods for treatment of wastewater: UV/TiO2, RO and UF. Chemical Engineering and Processing. 43 (7), 935–940.
  • 2. Andreev S., Grishin B., Maksimov S., Titov A., Nikolaev V. 2006. Intensification of the process of mass exchange in aeration structures of biological sewage treatment as a factor affecting the improvement of secondary sedimentation tanks.News of higher educational institutions. Construction. No. 11–12. 56–60.
  • 3. Auerbach E.A., Seyfried E. E., McMahon K.D. 2007. Tetracycline resistance genes in activated sludge wastewater treatment plants. Water Research. No. 41. 1143–1151.
  • 4. Burger R., Diehl S., Nopens I. 2011. A consistent modelling methodology for secondary settling tanks in wastewater treatment. Water Research. 45(6). 2247–2260.
  • 5. Canales A., Pareilleux R.J.L., Goma G., Huyard A. 1994. Decreased sludge production strategy for domestic wastewater treatment. Water Science and Technology. No. 30 (8) 97–106.
  • 6. David R., Saucez P., Vasel J.L., Vande Wouwer A. 2009. Modeling and numerical simulation of secondary settlers: A Method of Lines strategy. Water Research. 43(2). 319–330.
  • 7. de Clercq B. 2003. Computational fluid dynamics of settling tanks e development of experiments and rheological, settling, and scraper submodels. University of Gent. 324 p.
  • 8. Deleris S., Geaugey V., Camacho P., Debellefontaine H., Paul E. 2002. Minimization of sludge production in biological processes: an alternative solution for the problem of sludge disposal. Water Science and Technology, 46(10). 63–70.
  • 9. Denisov A.A., Rozaeva A.V., Shamanova L.A., Koroleva E.A., Pavlenko A.L., Canarskaya Z.A. 2016. Method of calculating the optimal size and operating mode of the secondary settler in biological wastewater treatment technology. Vestnik Kazanskogo tehnologicheskogo universiteta [Bulletin of Kazan Technological University], 19(3), 101–104.
  • 10. Dziubo V.V., Alferova L.I. 2014. Modernization of air-lift unit for active sludge recirculation. Vodoochistka. No. 10. 29–33.
  • 11. Guest J.S., Skerlos S.J., Barnard J.L., Beck M.B., Daigger G.T., Hilger H., Jackson S.J., Karvazy K., Kelly L., Macpherson L., Mihelcic J.R., Promanik A., Raskin L., Van Loosdrecht M.C.M., Yeh D., Love N.G. 2009. A new planning and design paradigm to achieve sustainable resource recovery from wastewater. Environmental Science & Technology. 43(16). 6126–6130.
  • 12. Hunze M. 2005. Simulation in der kommunalen Abwasserreinigung. Oldenburg Industrieverlag. Munich. Germany, pp. 380.
  • 13. Ivanov V.G., Amelichkin S.G., Medvedev A.N. 2012. Constructive solutions for the modernization of existing secondary sedimentation tanks using thin-layer modules. Voda i Ecologiya: Problemy i Resheniya. No. 2–3 (50–51). 62–69.
  • 14. Mishukov B.G., Solovieva E.A. 2001. The results of secondary radial sedimentation of sewage treat- ment plants and their mathematical interpretation. Voda i Ecologiya: Problemy i Resheniya. 2 (7). 42–45.
  • 15. Ni B.J., Yu H.Q. 2012. Microbial products of activated sludge systems in biological wastewater treatment systems: a critical review. Critical Reviews in Environmental Science and Technology. No. 42. Pp. 187–223.
  • 16. Ospanov K.T. 2017. Integrated technology of sewage sludge treatment. Monograph. Almaty: KazNRTU,– 171 p.
  • 17. Ospanov K.T., Demchenko A.V., Tamabaev O.P. 2014. A device for mechanical cleaning of the bottom of a radial settler. Patent 2014/0748.1 dated May 30, 2014.
  • 18. Pijuan M., Wang Q., Ye L., Yuan Z. 2012. Improving secondary sludge biodegradability using free nitrous acid treatment. Bioresource Technology. No. 116. 92–98.
  • 19. Radjenovic J., Petrovic M., Barcelo D. 2009. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Research. No. 43, 831–841.
  • 20. Ratkovich N., Horn W., HelmusF.P., Rosenberger S., NaessensW., NopensI.,Bentzen T.R. 2013. Activated sludge rheology: A critical review on data collection and modelling. Water Research. No. 47. 463–482.
  • 21. Sanin F.D., Clarkson W.W., Vesilind P.A. 2011. Sludge Engineering: the Treatment and Disposal of Wastewater Sludges, first ed. DEStech Publications Inc, Pennsylvania.
  • 22. Solovieva E.A. 2008. Improving the design of secondary sedimentation tanks at sewage treatment plants. Promyshlennoe I grazhdanskoestroitel’stvo. No. 10. 37–38.
  • 23. Technological regulations for the operation of treatment facilities at the Aeration station in Almaty. 2005, pp. 128 .
  • 24. Typical project 902–2-377.83 Sewage sewage secondary sedimentation tanks made of prefabricated reinforced concrete with a diameter of 40 m. Album 6, part 2. Moscow 1983, pp. 74.
  • 25. Vaxelaire J., Ce´zac P. 2004. Moisture distribution in activated sludge: a review. Water Research. No. 38. 2215–2230.
  • 26. Yasui H., Shibata M. 1994. An innovative approach to reduce excess sludge production in the activated sludge process. Water Science and Technology. 30 (9). 11–20.
  • 27. Zhmur N.S. 2011. Analysis of the causes of development, and methods for suppressing filamentous swelling of activated sludge and silt foaming. Part 1. Vodosnabzhenie i Kanalizatciya. No. 1. 94–107.
  • 28. Zhmur N.S. 2003. Technological and biochemical processes of sewage treatment at facilities with aerotanks. Moscow: Akvaros, pp. 512.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-459a7319-75f0-49b5-9e69-39542242aee5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.