Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper focuses on the development and validation of a new computational framework designed for the prediction of tonal and broadband noise radiation of propellers of unmanned aerial vehicles (UAVs) operating in the low-Reynolds number regime. The depictedworkflowis hybrid, consisting of in-house, academic, and commercial software components intended for automatic pre-processing (block-structured grid generation), efficient flow solution (computational fluid dynamics, CFD), and acoustic post-processing (computational aeroacoustics, CAA). The delayed detached-eddy simulation (DDES) approach constitutes the basis for estimation of mean blade loading and surface pressure fluctuations due to the existence of massive flow separation that are fed as input to an in-house acoustic solver based on Ffowcs Williams and Hawkings (FW–H) linear acoustic analogy (Farassat’s formulation 1A). The initial phase of validation of the acoustic tool is conducted for elementary rotating and oscillating point sources of mass and momentum (forces) using available analytical solutions for reference. Later, a two-bladed model propeller from the Delft University of Technology (TUD) is analyzed with FLOWer (compressible CFD solver from DLR), relying on RANS or DDES approaches and equipped with either 1-equation strain adaptive linear Spalart–Allmaras or 2-equation shear-stress transport k–! turbulence closures. The equations are solved using both classical second-order and modern fourth-order accurate numerical schemes. For a selected rotational speed of 5000 RPM (tip Mach number of 0.23 and tip Reynolds number of 50 • 103) and the range of the advance ratio J of the axial flight, the predicted propeller aerodynamic performance is confronted with the measurements of TUD. Lastly, for exemplary J = 0 (hover conditions, tripped boundary layer), the resolved pressure fluctuations (URANS/k–! SST and DDES/k–!SST) are directly used as input for acoustic analysis of tonal (harmonic) and broadband noise at an in-plane observer location and the resultant propeller sound pressure level signature is compared with the measured spectrum confirming the applicability of the developed framework for such computationally demanding cases of flow-induced noise.
Czasopismo
Rocznik
Tom
Strony
67--85
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
autor
- Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
autor
- Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
autor
- Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
Bibliografia
- 1. S.A. Rizzi, D.L. Huff, D.D. Boyd, Urban air mobility noise: current practice, gaps, and recommendations, NASA Langley Technical Publication, TP-2020-5007433, 1–48, 2020.
- 2. D. Casalino, G. Romani, R. Zhang, H. Chen, Lattice-Boltzmann calculations of rotor aeroacoustics in transitional boundary layer regime, Aerospace Science and Technology, 130, 107953, 1–12, 2022, https://doi.org/10.1016/j.ast.2022.107953.
- 3. A. Broatch, R. Navarro, J. García-Tíscar, F.N. Ramírez, Evaluation of different FW-H surfaces and modal decomposition techniques for the acoustic analysis of UAV propellers through detached eddy simulations, Aerospace Science and Technology, 146, 108956, 1–12, 2024, https://doi.org/10.1016/j.ast.2024.108956.
- 4. O. Szulc, Rotorcraft thickness noise control, Archives of Mechanics, 73, 4, 391–417, 2021, https://doi.org/10.24423/aom.3756.
- 5. P. Candeloro, D. Ragni, T. Pagliaroli, Small-scale rotor aeroacoustics for drone propulsion: a review of noise sources and control strategies, Fluids, 7, 279, 1–23, 2022, https://doi.org/10.3390/fluids7080279.
- 6. E. Grande, D. Ragni, F. Avallone, D. Casalino, Laminar separation bubble noise on a propeller operating at low Reynolds numbers, AIAA Journal, 60, 9, 5324–5335, 2022, https://doi.org/10.2514/1.J061691.
- 7. E. Grande, G. Romani, D. Ragni, F. Avallone, D. Casalino, Aeroacoustic investigation of a propeller operating at low Reynolds numbers, AIAA Journal, 60, 2, 860–871, 2022, https://doi.org/10.2514/1.J060611.
- 8. D. Casalino, E. Grande, G. Romani, D. Ragni, F. Avallone, Definition of a benchmark for low Reynolds number propeller aeroacoustics, Aerospace Science and Technology, 113, 106707, 1–16, 2021, https://doi.org/10.1016/j.ast.2021.106707.
- 9. E. Grande, S. Shubham, F. Avallone, D. Ragni, D. Casalino, Computational aeroacoustic study of co-rotating rotors in hover, Aerospace Science and Technology, 153, 109381, 1–12, 2024, https://doi.org/10.1016/j.ast.2024.109381.
- 10. J.E. Ffowcs Williams, D.L. Hawkings, Sound generation by turbulence and surfaces in arbitrary motion, Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 264, 1151, 321–342, 1969, https://doi.org/10.1098/rsta.1969.0031.
- 11. F. Farassat, Derivation of formulations 1 and 1A of Farassat, NASA Langley Technical Memorandum, TM-2007-214853, 1–20, 2007.
- 12. S.W. Rienstra, A. Hirschberg, An introduction to acoustics, Technical University of Eindhoven Report, IWDE 01-03, 264–269, 2021.
- 13. T. Suresh, O. Szulc, P. Flaszynski, Aeroacoustic analysis based on FW–H analogy to predict low-frequency in-plane harmonic noise of a helicopter rotor in hover, Archives of Mechanics, 74, 2-3, 201–246, 2022, https://doi.org/10.24423/aom.3999.
- 14. J. Raddatz, J.K. Fassbender, MEGAFLOW-Numerical Flow Simulation for Aircraft Design; Chapter 2, Block structured Navier–Stokes solver FLOWer, Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), 89, 27–44, 2005, https://doi.org/10.1007/3-540-32382-1.
- 15. T. Rung, U. Bunge, M. Schatz, F. Thiele, Restatement of the Spalart–Allmaras eddyviscosity model in strain-adaptive formulation, AIAA Journal, 41, 7, 1396–1399, 2003, https://doi.org/10.2514/2.2089.
- 16. P.R. Spalart, S. Deck, M.L. Shur, K.D. Squires, M.Kh. Strelets, A. Travin, A new version of detached-eddy simulation, resistant to ambiguous grid densities, Theoretical and Computational Fluid Dynamics, 20, 3, 181–195, 2006, https://doi.org/10.1007/s00162-006-0015-0.
- 17. K. Kitamura, E. Shima, Towards shock-stable and accurate hypersonic heating computations: a new pressure flux for AUSM-family schemes, Journal of Computational Physics, 245, 62–83, 2013, https://doi.org/10.1016/j.jcp.2013.02.046.
- 18. V.N. Vatsa, M.H. Carpenter, D.P. Lockard, Re-evaluation of an optimized second order backward difference (BDF2OPT) scheme for unsteady flow applications, Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 4–7 January 2010, Orlando, USA, 2010-0122, 1–15, 2010, https://doi.org/10.2514/6.2010-122.
- 19. F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal, 32, 8, 1598–1605, 1994, https://doi.org/10.2514/3.12149.
- 20. M.S. Gritskevich, A.V. Garbaruk, J. Schütze, F.R. Menter, Development of DDES and IDDES formulations for the k-! shear stress transport model, Flow, Turbulence and Combustion, 88, 431–449, 2012, https://doi.org/10.1007/s10494-011-9378-4.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4598b525-15e5-4b9c-9073-f9a2a35d9f03
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.