PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Functional Properties and Electromagnetic Shielding Behaviour of Elastic Warp-knitted Fabrics

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Właściwości funkcyjne i ekranowanie elektromagnetyczne elastycznych dzianin kolumienkowych
Języki publikacji
EN
Abstrakty
EN
An investigation was made on the electromagnetic shielding behaviour and other functional properties for manufactured multifunctional elastic warp-knitted fabrics. Bamboo charcoal polyester/Crisscross-section polyester (BC-PET/CSP) blended yarns were used as the back of the warp-knitted fabric while conductive composite yarns were used as the front. The variation in the far infrared emissivity and anion density of elastic-warp knitted fabrics produced with different proportions of BC-PET content were studied in detail. Moreover the electromagnetic shielding effectiveness (EMSE) of the fabrics with different elongation was measured in this study. The experimental results showed that increased elongation almost did not significantly affect the EM shielding behaviour of fabric K1 in the elongation range of 0 - 40%. Finally to increase the EMSE of the fabric, the lamination method was used in this study. EMSE measurement results showed that two layer K1 warpknitted fabrics with 90° interval displayed a better shielding effect against the EM wave compared to that with a 0° interval.
PL
Przeprowadzono badania właściwości ekranujących przed polem elektromagnetycznym i innych właściwości funkcyjnych wyprodukowanych wielofunkcyjnych elastycznych dzianin kolumienkowych. Zastosowano przędze kompozytowe z mieszanek zawierających drut ze stali kwasoodpornej, ciągłe włókna poliamidowe i poliestrowe oraz cięte włókna ze regenerowanej celulozy z surowca bambusowego. Badano emisyjność w dalekiej podczerwieni i gęstość anionową dzianin kolumienkowych wytworzonych przy rożnych proporcjach zastosowanych składników. Poza tym badano efektywność ochrony elektromagnetycznej dzianin przy rożnych wydłużeniach. Wyniki eksperymentów pokazują, że zwiększone wydłużenie prawie nie wpływa istotnie na właściwości ekranujące. Dla zwiększenia efektu ekranowania zastosowano metodę laminacji.
Rocznik
Strony
78--83
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • Liaoning Key Laboratory of Functional Textile Materials, Eastern Liaoning University, Dandong, P. R. China
  • School of Chemical Engineering, Eastern Liaoning University, Dandong, P. R. China
autor
  • Liaoning Key Laboratory of Functional Textile Materials, Eastern Liaoning University, Dandong, P. R. China
  • School of Chemical Engineering, Eastern Liaoning University, Dandong, P. R. China
autor
  • Liaoning Key Laboratory of Functional Textile Materials, Eastern Liaoning University, Dandong, P. R. China
  • School of Chemical Engineering, Eastern Liaoning University, Dandong, P. R. China
autor
  • School of Textiles, Tianjin Polytechnic University, Tianjin, P. R. China
autor
  • Institute of Biomedical Engineering and Material Science, Central Taiwan University of Science and Technology, Taichung, Taiwan R. O. C.
autor
  • Laboratory of Fibre Application and Manufacturing, Department of Fibre and Composite Materials, Feng Chia University, Taichung, Taiwan R. O. C.
autor
  • Laboratory of Fibre Application and Manufacturing, Department of Fibre and Composite Materials, Feng Chia University, Taichung, Taiwan R. O. C.
  • School of Chinese Medicine, China Medical University, Taichung, Taiwan R. O. C.
  • Department of Fashion Design, Asia University, Taichung, Taiwan R. O. C.
Bibliografia
  • 1. Perumalraj R, Dasaradan BS. Electromagnetic shielding effectiveness of doubled copper-cotton yarn woven materials. Fibres & Textiles in Eastern Europe 2010; 18, 3: 74-80.
  • 2. Pinar A, Michalak L. Influence of structural parameters of wale-knitted on their electrostatic properties. Fibres & Textiles in Eastern Europe 2006; 14, 5: 69-74.
  • 3. Rajendrakumar K, Thilagavathi G. A study on the effect of construction parameters of metallic wire/core spun yarn based knitted fabrics on electromagnetic shielding. Journal of Industrial Textiles 2012; 42, 4: 400-416.
  • 4. Ziaja J, Koprowska J, Janukiewicz J. Using plasma metallization for manufacture of textile screens against electromagnetic fields. Fibres & Textiles in Eastern Europe 2008; 16, 5: 64-66.
  • 5. Cheng KB, Ramakrishna KB, Lee KB. Electromagnetic shielding effectiveness of copper/glass fiber knitted fabric reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing 2000; 31, 10: 1039-1045.
  • 6. Lin JH, Low CW. Electrical properties of laminates made from a new fabric with PP/stainless steel commingled yarn. Textile Research Journal 2003; 73: 321–326.
  • 7. Perumalraj R, Dasaradhan BS, Anbarasu R, Arokiaraj P, Harish SL. Electromagnetic shielding effectiveness of copper core-woven fabrics. Journal of The Textile Institute 2009; 100, 6: 512-524.
  • 8. Ortlek HG, Saracoglu OG, Saritas O, Bilgin S. Electromagnetic shielding characteristics of woven fabrics made of hybrid yarns containing metal wire. Fibers and polymers 2012; 13, 1: 63-67.
  • 9. Bedeloglu A. Investigation of electrical, electromagnetic shielding, and usage properties of woven fabrics made from different hybrid yarns containing stainless steel wires. Journal of the Textile Institute 2013; 104, 12: 1359-1373.
  • 10. Bedeloglu A, Sunter, N, Bozkurt, Y. Manufacturing and properties of yarns containing metal wires. Materials and Manufacturing Processes 2011; 26, 11, 1378-1382.
  • 11. ASTM D 4935-99. Test method for measuring the electromagnetic shielding effectiveness of planar materials. American Society for testing and materials. West Conshohocken, PA, USA, 1999.
  • 12. Cheng KB, Lee ML. Electromagnetic shielding effectiveness of stainless steel/polyester woven fabric. Textile Research Journal 2001; 71, 1: 42-49.
  • 13. Morari C, Balan I, Pintea J, Chitanu E, Iordache, I. Electrical conductivity and Electromagnetic shielding effectiveness of silicone rubber filled with ferrite and graphite powers. Progress in Electromagnetics Research 2011; 21: 93-104
  • 14. Ogulata RT, Mavruz S. Investigation of porosity and air permeability values of plain knitted fabrics. Fibres & Textiles in Eastern Europe 2010; 18, 5: 71-75.
  • 15. Herath CN, Kang BC. Dimensional Stability of Core Spun Cotton/Spandex Single Jersey Fabrics under Relaxation. Textile Research Journal 2008; 78, 3: 209-216.
  • 16. Lin JH, Chen AP, Lin CM, Lin CW, Hsieh CT, Lou CW. Manufacture technique and electrical properties evaluation of bamboo charcoal polyester/stainless steel complex yarn and knitted fabrics. Fibers and Polymers 2010, 11, 6: 856-860.
  • 17. Yoo BH, Park CM, Oh TJ. Investigation of jewelry powder radiating far infrared rays and the biologicaleffect on human skin. International Journal of Cosmetic Science 2002; 53: 175–183.
  • 18. Karaguzel B. Characterization and Role of porosity in knitted fabrics. M.Sc. Thesis, North Carolina State university, Department of Textile Engineering, Chemistry and Science, 2004.
  • 19. Senthilkumar M, Anbumani, N. Dynamics of elastics knitted fabrics for sports wear. Journal of Industrial Textiles 2011; 41, 1: 13-24.
  • 20. Roh JS, Chi YS, Kang TJ. Electromagnetic shielding effectiveness of multifunctional metal composite fabrics. Textile Research Journal 2008; 78, 9: 825-835.
  • 21. Lou CW, Lin CM, Hsing, WH, Chen AP, Lin JH. Manufacturing techniques and electrical properties of conductive fabrics with recycled polypropylene nonwoven selvage. Textile Research Journal 2011; 81, 13: 1331-1343.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-458e7176-e589-45df-80f7-2a56d78beed9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.