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Abstract
Nautical measurements are randomly and systematically corrupted. There is a rich scope of knowledge re-
garding the randomness shown by results of observations. The distribution of stochastic distortions remains an 
estimate and is imprecise with respect to their parameters. Uncertainties can also occur through the subjective 
assessment of each piece of available data. The ability to model and process all of the aforementioned items 
through traditional approaches is rather limited. Moreover, the results of observations, the final outcome of 
a quality evaluation, can be estimated prior to measurements being taken. This a posteriori analysis is impaired 
and it is outside the scope of traditional, inaccurate data handling methods. To propose new solutions, one 
should start with an alternative approach towards modelling doubtfulness. The following article focusses on 
belief assignments that may benefit from the inclusion of uncertainty. It starts with a basic interval uncertainty 
model. Then, assignments engaging fuzzy locations around nautical indications are discussed. This fragment 
includes transformation from density functions to probability distributions of random errors. Diagrams of the 
obtained conversions are included. The presentation concludes with a short description of a computer applica-
tion that implements the presented ideas.

Introduction

The Mathematical Theory of Evidence (MTE) 
operates on the principle of belief assignments or 
belief functions. It exploits evidence sets and hypoth-
esis frames. It is widely believed that the evidence 
at hand supports each of the considered hypothesis 
items, although degrees of endorsement vary in real 
terms (Dempster, 1968; Shafer, 1976). Relationships 
between the involved universes/frames are encoded 
within belief assignments. The measures of included 
support are belief and plausibility values. The theo-
ry also offers combination mechanisms in order to 
increase the informative context of the initial evi-
dence. The combination scheme delivers results that 
support hypothesis space elements. The evidence is 
considered as a collection of facts and knowledge 
related to the observations. In navigation, facts 
are results of observations such as taken bearings, 

distances or horizontal/vertical angles. A combina-
tion scheme is expected to enable one to obtain the 
best solution provided by the given observations/
measurements and knowledge of their quality. This 
theory has already been successfully implement-
ed in many fields, some of which are related to the 
discussed area of application (Srivastava, Dutta 
& Johns, 1996; Ayoun & Smets, 2001; Filipowicz, 
2009; 2014; 2014a).

The results of observations can be affected by ran-
dom and systematic errors. Randomness is assumed 
to be governed by various distributions. The quality 
of measurements taken with different navigational 
aids differs. One may notice that discrepancies in the 
estimation of the randomness of distribution param-
eters have a prevailing character. It is a popular state-
ment, related to nautical observations, that the mean 
error of a bearing taken with a radar is falls in the 
range [±1°; ±2.5°]. This appears as a fuzzy figure 
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with a core and support as the respective intervals: 
[−1°; +1°], [−2.5°; +2.5°]. Evaluation of the mean 
error requires the fuzziness to be accepted and taken 
into account during computations. 

Random distortions are inevitable; however, sea-
farers are aware of this fact. This phenomenon is 
called aleatory uncertainty; it cannot be eliminated, 
but it might be evaluated to a certain extent. It is cru-
cial to include this type of doubtfulness into a pro-
cessing scheme. Most analyses exploit theoretical 
distributions but the empirical approach can be used 
instead. The most important thing is the ability to 
objectively evaluate the obtained output along with 
measures indicating its accuracy, i.e. the probability 
of achieving alternative results (Filipowicz, 2015). 
It is also necessary to emphasise how uncertainties 
included in input data propagate to give the obtained 
results.

There are publications devoted to the implemen-
tation of the MTE concept in nautical science (Fili-
powicz, 2010; 2016). Most of them discuss practi-
cal navigational aspects of the concept. This paper 
presents details regarding aleatory uncertainty mod-
elling and processing. This paper presents a basic 
uncertainty model. Then, the model is used while 
analysing erroneous observations. Fuzzy probability 
sets are introduced in the wake of the discussion of 
measurement errors. MTE was exploited in order to 
convert probability density into probability distribu-
tions. It is proven that conversion from fuzzy values 
to crisp ones is straightforward in nautical science. 
A combination scheme was introduced in order to 
show that the input uncertainty can be transferred to 
the obtained results. Finally, simple belief assign-
ment was presented and its advantages depicted. The 
paper concludes with a presentation of a computer 
application implementing the presented ideas, show-
ing a block diagram of the software solution and 
some practical results.

Basic interval uncertainty model

The popular basic uncertainty model includes 
a proposition and an associated range of probabili-
ties, also called a belief interval (Lee & Zhu, 1995). 
Given proposition z and the range of real values 
[a, b], one can define the model in terms of the truth 
of the statement. It can take the form of Equation 1:

     bababaz  and1,0,;,:  
 

 (1)

where: a – upper limit of probability that the propo-
sition z is true; b–a – range of uncertainty, possibility 

that the truth of z is defined by a descending func-
tion; and b – lower limit of probability that proposi-
tion z is false.

The proposition statement and its contradiction 
can be transferred into the belief assignment (see 
also Denoeux, 2000). The assignment shown in 
Table 1 engages two elements’ hypothesis space, Θ, 
reflecting the truth (true or false) of the considered 
proposition. Thus, one of the items is marked with 
z and another with ¬z, meaning the negation of z. 
Within the probability assignment, all elements of 
the power set of the considered frame might appear, 
consequently a multiple items subset of the frame: 
{z; ¬z} is present in the table. The mass attributed to 
such a set expresses doubtfulness; all the considered 
items are equally possible. For this reason, the last 
row refers to uncertainty, since it involves the whole 
frame of discernment.

Table 1. Basic probability assignment for the uncertainty 
model

Notation Probability value
m(z) a

m(¬z) 1 – b
m(z, ¬z) = m(Θ) b – a

m(z) probability mass that proposition z is true
m(¬z) probability mass that the negation of proposition z 

is true
m(z, ¬z) range within which one can doubt that the proposi-

tion is true

Usually, membership functions show the possi-
bility of x belonging to two fuzzy probability sets 
indicated with a tilde, for example 21

~,~ SS  
 

. In the con-
sidered case, the first set covers the range [0; b] and 
the second [a; 1]. Within the range [0; a], the possi-
bility of a true proposition z is equal to one, then it 
descends and reaches zero at point b. Interval [a; b] 
contains an amount of ignorance and doubtfulness 
in the truth of proposition z. Furthermore, the state-
ment cannot be true, contrary to ¬z for which the 
possibility of being true is one within the rightmost 
[b; 1] range. The value of a can be treated as the 
belief that z is true, and the upper bound, b, refers to 
the plausibility that z is true (proof may be found in 
(Lee & Zhu, 1995)).

Uncertainty model for nautical science

Uncertainty, which is related to random and sys-
tematic measurement deflections, is present in all 
nautical measurements. An observation made with 
a navigational aid is randomly deflected and can be 



A logical device for processing nauti cal data

Zeszyty Naukowe Akademii Morskiej w Szczecinie 52 (124) 67

treated as an instance of a random variable, gov-
erned by some kind of distribution. The Gaussian 
bell function is often used, although discrepancies 
in the parameters of such distributions frequently 
occur. It is a common statement (Jurdziński, 2014) 
that the mean error of a distance taken with a radar 
is distorted and its true value falls within the range 
of [±1%; ±2.5%] of the measured distance. Seafarers 
know much about the unavoidable random nature 
of measurements. This sort of doubtfulness can be 
referred to as aleatory uncertainty.

A graphical interpretation of the accuracy eval-
uation statement is presented in Figure 1. The lim-
its of the introduced approximate range are three 
standard deviations of the bell functions. Therefore, 
for the measured distance of 10 km: σmin = 33.33 m, 
σmax = 83.33 m.

 
 

min 

 

max 

Probability density 

x σmax σmin 

Figure 1. Interpretation of statement regarding popular 
accuracy evaluation

The range-valued evaluation of the mean error 
appears as a fuzzy fi gure; thus, fuzziness appears to 
be a helpful tool in constructing an adequate obser-
vation model.

The example of aleatory uncertainty related to 
the distance to a landmark observation is shown in 
Figure 2. Hereafter, it is assumed that randomness 
is governed by the Gaussian distribution. There 
are various estimates of the dispersion parameters 

available. Two of the dispersions, one of which is 
optimistic with a standard deviation σmin, and the 
second assumed to be pessimistic with deviation 
σmax, are presented in Figure 2. The distance mea-
sured is marked by the point on the y-axis and the 
abscissa intersection. 

Given the above mentioned data, one can deter-
mine whether or not the proposition “the true dis-
tance to the landmark is represented by a point close 
to abscissa x1” is true.. The measurement related 
proposition refers to the easily established interval 
[C⋅p1 min; C⋅p1 max], where C depends on the width of 
the considered neighbourhood of abscissa x1, since 
the given diagram represents a probability density 
function.

Considering the presented information, the 
discussion of range-valued uncertainty is direct-
ly applicable to nautical science. Range-valued 
uncertainty is relevant while handling navigational 
observations. The possibility of various distances 
belonging to fuzzy probability sets is to be defi ned 
in a way that aims to be very much like the basic 
uncertainty model. Thus, as stated above, possibil-
ity and probability can be used jointly to include 
uncertainty in the defi ned mathematical model. In 
order to introduce the concept, appropriate fuzzy 
sets are to be defi ned regarding random distortions 
of nautical observations. Let us concentrate on errors 
in distance taking governed by the Gaussian distri-
bution: an example is presented in Figure 3, which 
shows adjacent overlapping confi dence intervals 
with fuzzy limits. Four fuzzy probability sets were 
established:                        , which are also referred 
to using their corresponding cumulative probability 
values, for example:  

 
0.673, 0.278, 0.047, 0.002  .

Four confi dence intervals with the rightmost 
mean borders at points: i·σm for i ∈ {1..4} were 
introduced at fi rst. The probabilities of each point 
within a given interval representing the true dis-
tance are constant. For the fi rst one, it reaches 0.673 

4321
~,~,~,~ SSSS  
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Figure 2. Aleatory uncertainty related to the distance to a landmark observation
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assuming a single-sided analyses. Practical aleato-
ry uncertainty enforces the interval-valued limits of 
the introduced ranges, these must be considered as: 
[i·σmin; i·σmax] for i∈{1..4}. Where σm is the mean of 
σmin and σmax. Given fuzzy sets, one has to propose 
a membership function that enables the calculation 
of grades, i.e. the degree of belonging to each set.
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Figure 3. Adjacent overlapping confi dence intervals with 
fuzzy limits and example membership grades for two select-
ed points
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Figure 4. Second fuzzy set considered with its membership 
function consisting of two sigmoidal segments

The exploded insertion in Figure 3 shows two 
selected points’ probabilities of representing the true 
measurement. The appropriate likelihood fi gures are 
the last of the presented data. They are preceded by 
membership grades calculated for each of the four 
considered fuzzy sets. The membership grades were 
calculated using sigmoidal functions. Their param-
eters were obtained with an algorithm which guar-
antees the highest descending rate of the sigmoid-
al function regarding the given standard deviation 
range (see Figure 4). Membership grades within 
introduced fuzzy probability sets and the probabil-
ity of a point representing the true measurement are 

shown in Table 2. Note that in nautical science, the 
grade of belonging has geographical (geometrical) 
meaning.

As seen in Figure 1, the standard deviations of 
probability density dispersions can diff er. Thus, 
instead of discussing confi dence intervals with crisp 
limits, one should try to introduce their fuzzy bor-
ders. As it is widely assumed, standard deviations 
are usually interval-valued and separately defi ned 
based on a series of experiments. The second fuzzy 
set,     , considered in the paper, with its membership 
function consisting of two sigmoidal fragments, is 
illustrated in Figure 4. The function µ′1 indicates not 
belonging to the fi rst fuzzy set,    , at the same time, 
µ2 indicates inclusion in the second set,     .

Table 2. Membership grades within introduced fuzzy proba-
bility sets and belief and plausibility measures of two points 
representing the true measurement

Fuzzy 
set name

Proba-
bility

Membership grades:
µ (x1) µ (x2)

0.673 0.985 0.089

0.278 0.015 0.909

0.047 0 0.091

0.002 0 0.021

bel( ..) 0.604 0.254
pl( ..) 0.677 0.317
PM [0.604; 0.677] [0.254; 0.317]

PM interval-valued probability mass that the point 
represents the true measurement

In discrete domains, fuzziness denotes mem-
bership within each item of the considered frame 
(Yen, 1990). Hereto inclusions into the introduced 
fuzzy sets are considered instead. From Table 2, it 
can be seen that point number 1 is located within 
the fi rst and second set with degrees of 0.985 and 
0.015 respectively. For point number 2, these values 
are 0.089 and 0.909. Additionally, the second point 
belongs to sets 3 and 4 with respective grades of 
0.091 and 0.021. It should be stressed that degrees 
of belonging may sum to greater than one as the 
sum grows with increasing uncertainty of the data 
at hand.

The shaded part of Table 2 embraces belief 
assignment regarding the locations of points x1 and 
x2 as shown in Figure 3. The depicted assignment 
includes locations within consecutive fuzzy sets 
along with the probabilities assigned to these sets.

Given the assignment of this type, one can cal-
culate the belief and plausibility supporting the truth 
of the considered statement. Formula (2) presents 
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the general expressions for obtaining the required 
supporting data for normal fuzzy set, A~  

 
, embedded 

within the collection (Denoeux, 2000; Filipowicz, 
2009a). Note that set A~  

 
 contains full membership 

of a single point from those within the hypothesis 
frame.
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where: xi is i-th item of the considered frame Ω; A~  
 

 is 
a fuzzy set pattern of the singleton type {0, 1, 0, …}.

Applying Formula (2) with the A~  
 

 fuzzy set, one 
obtains the data presented in the last rows of Table 2. 
Due to the inequality of both measures, one arrives 
at the interval-valued probability that expresses the 
sought support for the considered proposition. Its 
belief and plausibility values for the location of x1 
representing the true measurement are 0.604 and 
0.677 respectively.

The above discussion can be perceived from the 
perspective of propositions involving a set of points. 
In the example, a disjunctive kind of statement refer-
ring to atomic points x1 or x2, or even a molecule 
containing both points, as representatives of the true 
measurement is considered. Whether the proposition 
is true or not can be sought in the context of any 
single point or cluster of items within the considered 
space. The truth of the statement can be calculated 
using Formula (2), which is valid for a single point 
of interest. Support of the result, obtained for four 
fuzzy sets, is interval-valued. Calculating the belief 
measure, one has to reduce its value in order to take 
into account any other point located within the giv-
en fuzzy set. The general rule that “the greater the 
likelihood of something else located within a set, the 
smaller the belief measure” is valid for all considered 

fuzzy sets: note that this does not apply to the plau-
sibility value.

Most interesting is the case where a single point, 
xi, is considered. Data referring to example point 
x1 is shown in Table 3. Note that belief and plausi-
bility measures are the same when one attempts to 
find out the truth of whether x1 represents the true 
measurement. Thus, the supporting probability is 
crisp-valued. This is a very practical finding since 
consequently logical formulae, indicating true mea-
surement or fixed position, appear less complicat-
ed and the computation complexity is significantly 
reduced.

Based on probability density distributions, their 
interval-valued parameters, selected confidence 
intervals and membership functions, one can deter-
mine crisp probability of representing the true obser-
vation as defined by Formula (3). The formula is also 
valid for twodimensional distributions with the same 
discrepancies in density distribution estimates.

 ),),,((   yxdfpi  
 

 (3)

where: d – point (x, y) at a distance from the ref-
erence position (in the presented one-dimensional 
examples y = 0), σ – standard deviation of density 
distribution function, ∆σ – discrepancy in evaluation 
of the standard deviation of the density distribution 
function.

Using the formula, one can evaluate the probabil-
ity that any point (x, y) represents the true measure-
ment provided that bell-shaped density distribution 
functions are assumed. Figure 5 illustrates single- 
-sided probabilities of representing the true mea-
surement for two cases regarding discrepancies in 
probability density estimates. The injective function 
diagrams present the respective probabilities for sin-
gle sided locations regarding the taken measurement. 
The diagrams were obtained for two discrepancies 
in the standard deviation estimation. It was assumed 
that for the lower diagram σmax – σmin = 0.3 σm, and for 
the upper one σmax – σmin = σm. In the latest case, the 
range of more than zero probability is extended com-
pared to the initial density function, which is very 
close to zero for relative distance equal to 3. Conse-
quently, it can be suggested that p(3) can be used as 
a measure indicating the quality of the observation 
or reliability of the indication, such that “the higher 
the p(3) value the less credible the indication”.

The general rule that “the higher the discrepan-
cy in evaluation of the initial distribution charac-
teristics, the wider the range of the probability dia-
gram” appears to be fairly obvious. Paradoxically, it 
appears that less reliable observations have higher 

4321
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Table 3. Membership grades within the introduced fuzzy 
probability sets and belief and plausibility measures of point 
x1 representing the true measurement

Fuzzy set name Probability µ(x1)

0.673 0.985

0.278 0.015
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assigned probabilities. To reduce this phenomenon, 
one should consider p(3) as a major factor in the sub-
jective assessment of the measurement.

One statement/single observation contributes to 
the definition of a single belief assignment. It is prac-
tical to have more observations (pieces of evidence) 
and to find out the truth of a statement from the per-
spective of multiple inputs. A handful of measure-
ments might deliver crucial results once all the items 
are combined. The association scheme is important 
from the uncertainty propagation point of view. In 
nautical science, the scope of doubtfulness regard-
ing each of the observations should be transferred to 
the analysis of the accuracy of results. The statistical 
approach appears of limited value in this respect.
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 Figure 5. Single sided probabilities of representing the true 
measurement for two cases regarding discrepancies in den-
sity probability estimations

Considering the above transformation, belief 
functions can be perceived in different way as pairs 
of values defined by Formula 6. There are certain 
propositions set and levels of support embedded 
within the given piece of evidence ei. In metrology 
and nautical science, measurements are perceived as 
evidence that is randomly and, potentially, systemat-
ically distorted. Evidence is also assumed to include 
nautical knowledge. All the above mentioned items 
appear as challenges to analysts once the traditional 
approach is exploited.

Belief assignments embrace the relationships 
between evidence and hypothesis frames. They tell 

how a single i-th piece of evidence supports each 
proposition, given their geographical location. In 
nautical science, an example hypothesis would be 
treating a given point as the fixed position of a ship 
(Filipowicz, 2012, 2014). Seeking support that 
a given location might represent the true observa-
tion (Filipowicz, 2014b) or looking for the distance 
between rescue units in a search and rescue (SAR) 
operation to guarantee success in detecting casual-
ties are other practical issues.
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  (4)
where: zx,y – proposition stating the truth of some-
thing located at point (x, y) (true observation, fixed 
position, etc.); m(zx,y)i – supporting mass of the prop-
osition embedded within the i-th piece of evidence; 
Si – observer’s subjective evaluation of the i-th piece 
of evidence.

Belief functions in nautical applications repre-
sent evidence with encoded relationships with prop-
ositions and are subject to combination in order to 
increase their informative context. Representations 
of evidence and results of their combinations could 
include inconsistencies wherever null generating 
operations are involved. Conflicts appear when 
some probability is assigned to an empty set, refer 
to Table 4 for an example. Normalization procedures 
remove inconsistencies in order to avoid conflicting 
final results. Conflicts can cause belief to be greater 
than the plausibility measure. The most popular nor-
malization procedures feature some disadvantages.

Two belief functions are presented in the shaded 
part of the first row and first column of Table 4. Con-
junctive combination matrix cells for the above-men-
tioned belief assignments are not shaded. The sum-
marised results of the association are presented in the 
column entitled mC (..). The data require conversion, 

Table 4. Two probability assignments and their combinations with final results

m2(z) =0.76 m2(¬z) =0.05 m2(Θ) =0.19 mC (..) mC
D (..) mC

Y (..)

m1(z) =0.5 m12(z)=0.38 m12(∅)=0.025 m12(z)=0.095 0.741 0.861 0.741
m1(¬z) =0.15 m12(∅)=0.114 m12(¬z)=0.008 m12(¬z)=0.029 0.054 0.062 0.054
m(Θ) =0.35 m12(z)=0.266 m12(¬z)=0.018 m12(Θ)=0.067 0.067 0.077 0.206

m(∅) 0.139 0.000 0.000
mC (..) –  non-normalized combined mass values
mC

D (..) –  combined mass values normalized through the Dempster method
mC

Y (..) –  combined mass values normalized through the Yager method
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since there is some mass attributed to the empty set 
(which may be seen in the last row of the table). 
Such an assignment brings about an inconsistent, 
conflicting situation that should be avoided. When 
this occurs, mainly during null generating associa-
tion, it must be eliminated. It is normalization that 
leads to belief structures and assignments without 
cases of unwanted inconsistency (Yager, 1996).

Application implementing the presented 
concept

Based on the above discussed ideas, a computer 
application was designed and implemented. It aims 
to calculate support for indicating a ship’s position 
by a mouse follow-up procedure, given data and 
a nautical knowledge base extended by observation 
based evidence. Positions delivered by different 

navigational aids were used as input data. An exam-
ple constellation of two-dimensional random vari-
ables is presented in Figure 7. The mean errors of 
each indication are illustrated by circles centered on 
the measured position. Discrepancies in dispersion 
evaluations were assumed high, equal to 90% for all 
cases (σmax – σmin = 0.9 σm). At first the system is able 
to select the point with the highest belief/plausibility 
figures, it then loops through the mouse follow-up 
procedure.

In order to indicate the required support, an 
evaluation of the accuracy is performed and mem-
bership functions are defined. Given those proba-
bility density functions, conversion to probability 
distributions for each observation is carried out. At 
this step, adjustment of the probability distributions 
is also performed considering the defined search 
space. Then, simple belief assignments (see For-
mula 4) related to each observation are developed. 
Further, on looping for and updating associations 
of belief structures, results are displayed. A block 
diagram of the computer application is presented in 
Figure 6.

In the mouse follow-up procedure, belief assign-
ment for cursor coordinates was updated. Structures 
were further combined and support measures calcu-
lated and stored for future analysis. Displaying the 
results was the final step. An example of the applica-
tion’s outputs is shown in Figure 8. Plausibility val-
ues supporting the representation of the true position 
are shown for a coarse mesh of locations. In addition 

 

 
 
 Figure 6. Block diagram of computer application implementing the presented approach

 
 

Figure 7. Example of four indications of position from vari-
ous aids and the point for which the calculated belief/plausi-
bility measures proved to be greatest
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to this, belief and plausibility measures are displayed 
for the mouse cursor representing the true position.

Conclusions

Dealing with uncertain and imprecise evidence 
is a challenge in both nautical science and in prac-
tice. Formal descriptions of problems encountered 
in navigation involve models that accept imprecise, 
erroneous and, therefore, uncertain values. This 
gives rise to many practical problems that should be 
taken into consideration during navigation, such as 
true location measurement, position fixing and sys-
tematic error identification.

This paper presents an approach involving the 
application of belief assignments in nautical sci-
ence. At first, the basic uncertainty model was intro-
duced. Then aleatory doubtfulness encountered in 
metrology was presented. Knowledge related to 
random deflections of measurements fits into the 
model and therefore can be included into the pro-
cessing scheme. The uncertainty model is intended 
for a fuzzy environment. Fuzziness can be inter-
preted in different ways although fuzzy probability 
sets are always involved. Membership functions are 
exploited to make decisions in dilemmas regarding 
the location of the true measurements of the given 
observations.

Fuzzy sets may be associated with cumulated 
probability calculated for specified intervals, once 
the bell function is considered. They can be related to 
bins when empirical distribution is involved. Fuzzy 
sets are defined by membership functions. Polyline 
and sigmoidal functions are used very often. 

Aleatory doubtfulness arises once one makes 
nautical observations. They are systematically and 
randomly distorted. A seafarer knows a considerable 
amount about this fact and he or she has an in-depth 

knowledge concerning the diversity of probability 
density distributions. To include the knowledge into 
the computation scheme, one must invoke a fuzzy 
concept. Thanks to this concept, one can arrive at 
a crisp probability, which introduces the possibili-
ty of assessment of the truth of statements encoun-
tered in navigation, for example: “evaluate support 
that the true measurement is represented by a par-
ticular value”. Apart from supporting the truth, the 
presented concept enables transformation from den-
sity functions to probability distributions. Further, 
simple crisp-valued belief assignments were intro-
duced and discussed. This sort of function enables 
a straightforward combination scheme and a direct 
relationship between the calculated belief and plau-
sibility measures to be observed. The difference 
between the two features is equal to the mass of 
uncertainty. This type of belief function is based 
on implementing a logical device to manage uncer-
tain data. Therefore, processing uncertain nautical 
data can be split into two phases. At first, available 
evidence is analysed in order to identify probabili-
ty distributions. This stage engages fuzzy approxi-
mate reasoning. Once achieved, simple crisp belief 
assignments are built in order to find solutions to 
the problem at hand. It should be noted that, in this 
way, the complexity of the computation is reduced, 
thereby complex iterative procedures can be execut-
ed more efficiently. 
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