PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance comparison of ToA and TDoA based tracking in underwater multipath environments using bernoulli filter

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Underwater localization and tracking is a challenging problem and Time-of-Arrival and Time-Difference-of-Arrival approaches are commonly used. However, the performance difference between these approaches is not well understood or analysed adequately. There are some analytical studies for terrestrial applications with the assumption that the signal arrival times are not correlated. However, this assumption is not valid for underwater propagation. To present the distinct nature of the problem under the water, a high-fidelity simulation is required. In this study, Time-of-Arrival and Time-Difference-of-Arrival approaches are compared using a ray tracing based propagation model. Moreover, basic methods to mitigate the multipath propagation problem are also implemented for Bernoulli filters. Since the Bernoulli filter is a joint detection and tracking filter, the detection performance is also analysed. Comparisons are done for all combinations of filter and measurement approaches. The results can help to design underwater localization systems better suited to the needs.
Rocznik
Tom
Strony
135--144
Opis fizyczny
Bibliogr. 51 poz., rys.
Twórcy
autor
  • Defense Technologies Institute, Gebze Technical University Kocaeli, Turkey
Bibliografia
  • 1. R. O’Rourke, “Navy Large Unmanned Surface and Undersea Vehicles: Background and Issues for Congress,” Congressional Research Service, Washington, USA, Congressional Research Service R45757, 2020.
  • 2. I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: Research challenges,” Ad Hoc Networks, vol. 3, no. 3, pp. 257–279, May 2005, doi: 10.1016/j. adhoc.2005.01.004.
  • 3. H.-P. Tan, R. Diamant, W. K. G. Seah, and M. Waldmeyer, “A survey of techniques and challenges in underwater localization,” Ocean Engineering, vol. 38, no. 14–15, pp. 1663–1676, Oct. 2011, doi: 10.1016/j.oceaneng.2011.07.017.
  • 4. X. Su, I. Ullah, X. Liu, and D. Choi, “A Review of Underwater Localization Techniques, Algorithms, and Challenges,” Journal of Sensors, vol. 2020, pp. 1–24, Jan. 2020, doi: 10.1155/2020/6403161.
  • 5. R. J. Urick, Principles of Underwater Sound, 1st ed. McGrawHill, 1975.
  • 6. R. J. Urick, Sound Propagation in the Sea. US Government Printing Office, 1979.
  • 7. K. Buszman and M. Gloza, “Detection of Floating Objects Based on Hydroacoustic and Hydrodynamic Pressure Measurements in the Coastal Zone,” Polish Maritime Research, vol. 27, no. 2, pp. 168–175, Jun. 2020, doi: 10.2478/ pomr-2020-0038.
  • 8. P. Rong and M. L. Sichitiu, “Angle of arrival localization for wireless sensor networks,” presented at the 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks (SECON), Reston, VA, Sep. 2006.
  • 9. R. Kaune, J. Hörst, and W. Koch, “Accuracy analysis for TDOA localization in sensor networks,” presented at the Proceedings of the 14th International Conference on Information Fusion (FUSION), Chicago, IL, Jul. 2011.
  • 10. D. Plets, A. Eryildirim, S. Bastiaens, N. Stevens, L. Martens, and W. Joseph, “A performance comparison of different cost functions for RSS-based visible light positioning under the presence of reflections,” presented at the Proceedings of the 4th ACM Workshop on Visible Light Communication Systems at the 23rd Annual International Conference on Mobile Computing and Networking, Snowbird, UT, 2017, pp. 37–41. [Online]. Available: http://dx.doi. org/10.1145/3129881.3129888.
  • 11. X. Hou, J. Zhou, Y. Yang, L. Yang, and G. Qiao, “Adaptive Two-Step Bearing-Only Underwater Uncooperative Target Tracking with Uncertain Underwater Disturbances,” Entropy, vol. 23, no. 7, p. 907, Jul. 2021, doi: 10.3390/ e23070907.
  • 12. Localization Algorithms and Strategies for Wireless Sensor Networks. Information Science Reference, 2009.
  • 13. D. H. Shin and T.-K. Sung, “Comparisons of error characteristics between TOA and TDOA positioning,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 1, pp. 307–311, Jan. 2002.
  • 14. R. Kaune, “Accuracy studies for TDOA and TOA localization,” in 15th International Conference on Information Fusion (FUSION), Singapore, Jul. 2012.
  • 15. M. von Tschirschnitz, M. Wagner, M.-O. Pahl, and G. Carle, “A Generalized TDoA/ToA Model for ToF Positioning,” in 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Pisa, Italy, Sep. 2019, pp. 1–8. doi: 10.1109/IPIN.2019.8911742.
  • 16. J. Sidorenko, V. Schatz, N. Scherer-Negenborn, M. Arens, and U. Hugentobler, “Fusion of time of arrival and time difference of arrival for ultra-wideband indoor localization,” arXiv:1903.00901 [eess], Mar. 2019, Accessed: Jul. 07, 2021. [Online]. Available: http://arxiv.org/abs/1903.00901.
  • 17. E. A. Aronson, “Location Errors in Time of Arrival (ToA) and Time Difference of Arrival (TDoA) Systems,” Sandia Laboratories, SAND77-0495, 1977.
  • 18. Q. Liang, B. Zhang, C. Zhao, and Y. Pi, “TDoA for passive localization: Underwater versus terrestrial environment,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 10, pp. 2100– 2108, Oct. 2013.
  • 19. G. Han, J. Jiang, L. Shu, Y. Xu, and F. Wang, “Localization algorithms of underwater wireless sensor networks: A survey,” Sensors, 2012, doi: 10.3390/s120202026.
  • 20. A. Gunes, “Effect of underwater sound speed profile on target parameter estimation,” in International Conference on Engineering Technologies (ICENTE’17), Konya, Turkey, Dec. 2017, pp. 1–6.
  • 21. W. Biao, T. Jiansheng, Y. Fujian, and Z. Zhiyu, “Identification of Sonar Detection Signal Based on Fractional Fourier Transform,” Polish Maritime Research, vol. 25, no. s2, pp. 125–131, Aug. 2018, doi: 10.2478/pomr-2018-0083.
  • 22. Y. Ju, Z. Wei, L. Huangfu, and F. Xiao, “A New Low SNR Underwater Acoustic Signal Classification Method Based on Intrinsic Modal Features Maintaining Dimensionality Reduction,” Polish Maritime Research, vol. 27, no. 2, pp. 187–198, Jun. 2020, doi: 10.2478/pomr-2020-0040.
  • 23. B. Simon, “Minimal Problems and Applications in ToA and TDoA Localization,” Master Thesis, Lund University, Lund, Sweden, 2016.
  • 24. M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395, Jun. 1981, doi: 10.1145/358669.358692.
  • 25. S. Li, H. Sun, and H. Esmaiel, “Underwater TDOA Acoustical Location Based on Majorization-Minimization Optimization,” Sensors, vol. 20, no. 16, p. 4457, Aug. 2020, doi: 10.3390/s20164457.
  • 26. P. Wu, S. Su, Z. Zuo, X. Guo, B. Sun, and X. Wen, “Time Difference of Arrival (TDoA) Localization Combining Weighted Least Squares and Firefly Algorithm,” Sensors, vol. 19, no. 11, p. 2554, Jun. 2019, doi: 10.3390/s19112554.
  • 27. B. Zhang, Y. Hu, H. Wang, and Z. Zhuang, “Underwater Source Localization Using TDOA and FDOA Measurements with Unknown Propagation Speed and Sensor Parameter Errors,” IEEE Access, vol. 6, pp. 36645–36661, 2018, doi: 10.1109/ACCESS.2018.2852636.
  • 28. R. Diamant and L. Lampe, “Underwater Localization with Time-Synchronization and Propagation Speed Uncertainties,” IEEE Trans. Mobile Comput., vol. 12, no. 7, pp. 1257–1269, Jul. 2013, doi: 10.1109/TMC.2012.100.
  • 29. K. Hao, K. Yu, Z. Gong, X. Du, Y. Liu, and L. Zhao, “An Enhanced AUV-Aided TDoA Localization Algorithm for Underwater Acoustic Sensor Networks,” Mobile Netw. Appl., vol. 25, no. 5, pp. 1673–1682, Oct. 2020, doi: 10.1007/ s11036-020-01577-5.
  • 30. J. Yi, Z. Lin, F. Yuan, X. Wang, and J. Yuan, “An Improved ToA Ranging Scheme for Localization in Underwater Acoustic Sensor Networks,” in Communications, Signal Processing, and Systems, Singapore, 2020, vol. 571, pp. 2278–2284. doi: 10.1007/978-981-13-9409-6_276.
  • 31. I. Loncar and N. Miskovic, “Sensitivity Analysis for TDoAbased Localisation in Underwater Sensor Networks,” IFAC-PapersOnLine, vol. 52, no. 21, pp. 193–198, 2019, doi: 10.1016/j.ifacol.2019.12.306.
  • 32. A. Alcocer, P. Oliveira, and A. Pascoal, “Study and implementation of an EKF GIB-based underwater positioning system,” Control Engineering Practice, vol. 15, no. 6, pp. 689–701, Jun. 2007, doi: 10.1016/j. conengprac.2006.04.001.
  • 33. B. Liu, X. Tang, R. Tharmarasa, T. Kirubarajan, R. Jassemi, and S. Hallé, “Underwater Target Tracking in Uncertain Multipath Ocean Environments,” IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 6, pp. 4899–4915, Dec. 2020, doi: 10.1109/TAES.2020.3003703.
  • 34. Z. Ostrowski, R. Salamon, I. Kochańska, and J. Marszal, “Underwater Navigation System Based on Doppler Shift – Measurements and Error Estimations,” Polish Maritime Research, vol. 27, no. 1, pp. 180–187, Mar. 2020, doi: 10.2478/ pomr-2020-0019.
  • 35. P. C. Etter, Underwater Acoustic Modeling: Principles, Techniques and Applications. CRC Express, 1995.
  • 36. M. B. Porter and H. P. Bucker, “Gaussian beam tracing for computing ocean acoustic fields,” The Journal of the Acoustical Society of America, vol. 82, no. 4, pp. 1349–1359, Oct. 1987, doi: 10.1121/1.395269.
  • 37. M. B. Porter and Y.-C. Liu, “Finite-element ray tracing,” Theoretical and Computational Acoustics, vol. 2, pp. 947– 956, 1994.
  • 38. P. Felisberto, O. Rodriguez, P. Santos, E. Ey, and S. Jesus, “Experimental Results of Underwater Cooperative Source Localization Using a Single Acoustic Vector Sensor,” Sensors, vol. 13, no. 7, pp. 8856–8878, Jul. 2013, doi: 10.3390/ s130708856.
  • 39. J. S. Hovem, “Ray Trace Modeling of Underwater Sound Propagation,” in Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices, M. G. Beghi, Ed. InTech, 2013. doi: 10.5772/55935.
  • 40. B. Ristic, B.-T. Vo, B.-N. Vo, and A. Farina, “A tutorial on Bernoulli filters: Theory, implementation and applications,” IEEE Trans. Signal Process., vol. 61, no. 13, pp. 3406–3430, Jul. 2013, doi: 10.1109/TSP.2013.2257765.
  • 41. R. P. S. Mahler, Statistical Multisource-Multitarget Information Fusion. Artech House, 2007.
  • 42. J. W. Koch, “Extended object and cluster tracking using random matrices,” IEEE Trans. Aerosp. Electron. Syst., vol. 44, no. 3, pp. 1042–1059, Jul. 2008.
  • 43. X. R. Li and Y. Bar-Shalom, “Tracking in clutter with nearest neighbor filters: Analysis and performance,” IEEE Trans. Aerosp. Electron. Syst., vol. 32, no. 3, pp. 995–1010, Jul. 1996, doi: 10.1109/7.532259.
  • 44. Y. Bar-Shalom, F. Daum, and J. Huang, “The probabilistic data association filter,” IEEE Control Systems Magazine, pp. 82–100, Dec. 2009.
  • 45. X. Hou, J. Zhou, Y. Yang, L. Yang, and G. Qiao, “3D Underwater Uncooperative Target Tracking for a TimeVarying Non-Gaussian Environment by Distributed Passive Underwater Buoys,” Entropy, vol. 23, no. 7, p. 902, Jul. 2021, doi: 10.3390/e23070902.
  • 46. W. H. Munk, “Sound channel in an exponentially stratified ocean, with application to SOFAR,” The Journal of the Acoustical Society of America, vol. 55, no. 2, pp. 220–226, Feb. 1974, doi: 10.1121/1.1914492.
  • 47. J. L. Williams, “Marginal multi-Bernoulli filters: RFS derivation of MHT, JIPDA, and association-based member,” IEEE Trans. Aerosp. Electron. Syst., vol. 51, no. 3, pp. 1664– 1687, Jul. 2015, doi: 10.1109/TAES.2015.130550.
  • 48. H. T. Nguyen, An Introduction to Random Sets. Boca Raton: Chapman & Hall/CRC, 2006.
  • 49. R. P. S. Mahler, “Multitarget Bayes filtering via first-order multitarget moments,” IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 4, pp. 1152–1178, Oct. 2003.
  • 50. B. Ristic, Particle Filters for Random Set Models. New York: Springer, 2013.
  • 51. D. Schuhmacher, B.-T. Vo, and B.-N. Vo, “A consistent metric for performance evaluation of multi-object filters,” IEEE Trans. Signal Process., vol. 56, no. 8, pp. 3447–3457, 2008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-458b5c59-a415-42ad-8563-e0b76701d1f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.