PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Objective: Monitoring fetal cardiac activity during pregnancy is a critical part of assessing the fetus’s health. Non-invasive fetal electrocardiogram (NIFECG) is a safe emerging fetal cardiac monitoring approach receiving considerable interest. This paper proposes an effective way to separate the fetal ECG signal from the single-channel abdominal ECG signals. Methods: The paper proposes a novel algorithm based on time-frequency analysis combining fractional Fourier transform (FrFT) and wavelet analysis to extract fetal ECG from abdominal signals at higher accuracy. The abdominal signals acquired from pregnant women are preprocessed and subjected to suppressing maternal ECG using fractional Fourier transform and maximum likelihood estimate. The estimated maternal signal is removed from the abdominal ECG. The residue is processed using wavelet decomposition to obtain a clean fetal ECG and calculate fetal heart rate. Results: The proposed algorithm’s performance is validated using signals from the Daisy database and Physionet challenge 2013 set-a dataset. Real-time signals acquired using Powerlab data acquisition hardware are also included for validation. The obtained results show that the proposed algorithm can effectively extract the fetal ECG and accurately estimate the fetal heart rate. Conclusion: The proposed method is a promising and straightforward algorithm for FECG extraction. Fractional Fourier transform maps the time domain abdominal signal into the fractional frequency domain, distinguishing the fetal and maternal ECG. The Wavelet transform can efficiently denoise the residue abdominal signal and provides a clean fetal ECG. The proposed approach achieves 98.12% of accuracy, 98.85% of sensitivity, 99.16% of positive predictive value, and 99.42% of F1 measure.
Twórcy
  • Department of ECE, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kancheepuram, Chengapattu Dt., Tamilnadu, India
  • Department of ECE, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and 11 Technology, SRM Nagar, Kancheepuram 603203, Chengapattu Dt., Tamilnadu, India
autor
  • Department of ECE, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kancheepuram, Chengapattu Dt., Tamilnadu, India
  • Department of ECE, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kancheepuram, Chengapattu Dt., Tamilnadu, India
  • Department of ECE, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kancheepuram, Chengapattu Dt., Tamilnadu, India
  • Department of Obstetrics and Gyneacology, SRM Medical College Hosiptal and Research Centre, SRM Nagar, Kancheepuram, Chengapattu Dt., Tamilnadu, India
Bibliografia
  • [1] Zimmerman MS, Smith AG, Sable CA, Echko MM, Wilner LB, Olsen HE, et al. Global, regional, and national burden of congenital heart disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Child Adolesc Health. 2020 Mar 1;4(3):185–200. https://doi.org/10.1016/S2352-4642(19)30402-X.
  • [2] Knupp RJ, Andrews WW, Tita AT. The future of electronic fetal monitoring 2020. Best Pract Res Clin Obstet Gynaecol.
  • [3] Kupka T, Matonia A, Jezewski M, Jezewski J, Horoba K, Wrobel J, et al. New method for beat-to-beat fetal heart rate measurement using Doppler ultrasound signal. Sensors 2020;20(15):4079. https://doi.org/10.3390/s20154079.
  • [4] Gao Y, Noble JA. Detection and characterization of the fetal heartbeat in free-hand ultrasound sweeps with weakly-supervised two-streams convolutional networks. International Conference on Medical Image Computing and Computer-Assisted Intervention 2017 Sep 10 (pp. 305-313). Springer, Cham. 10.1007/978-3-319-66185-8_35.
  • [5] Gobillot S, Fontecave-Jallon J, Equy V, Rivet B, Gumery PY, Hoffmann P. Non-invasive fetal monitoring using electrocardiography and phonocardiography: A preliminary study 2018. J Obstet Gynecol Hum Reprod 47(9) 455-459. 10.1016/j.jogoh.2018.08.009.
  • [6] Mhajna M, Schwartz N, Levit-Rosen L, Warsof S, Lipschuetz M, Jakobs M, et al. Wireless, remote solution for home fetal and maternal heart rate monitoring. Am J Obstet Gynecol MFM 2020;2(2):100101. https://doi.org/10.1016/j.ajogmf.2020.100101.
  • [7] Youssef L, Miranda J, Paules C, Garcia-Otero L, Vellvé K, Kalapotharakos G, et al. Fetal cardiac remodeling and dysfunction is associated with both preeclampsia and fetal growth restriction. Am J Obstet Gynecol 2020;222(1):79.e1–9. https://doi.org/10.1016/j.ajog.2019.07.025.
  • [8] Khandoker AH, Schulz S, Al-Angari HM, Voss A, Kimura Y. Alterations in maternal-fetal heart rate coupling strength and directions in abnormal fetuses. Front Physiol 2019;26(10):482. https://doi.org/10.3389/fphys.2019.00482.
  • [9] Miranda JO, Cerqueira RJ, Ramalho C, Areias JC, Henriques-Coelho T. Fetal cardiac function in maternal diabetes: a conventional and speckle-tracking echocardiographic study. J Am Soc Echocardiogr 2018;31(3):333–41. https://doi.org/10.1016/j.echo.2017.11.007.
  • [10] Yuan L, Yuan Y, Zhou Z, Bai Y, Wu S. A fetal ECG monitoring system based on the android smartphone 2019. Sensors, 19 (3), 446. 10.3390/s19030446.
  • [11] Gupta V, Mittal M. QRS complex detection using STFT, chaos analysis, and PCA in standard and real-time ECG databases. J Inst Eng India Ser B 2019;100(5):489–97. https://doi.org/10.1007/s40031-019-00398-9.
  • [12] Gupta V, Mittal M, Mittal V, Gupta A. ECG signal analysis using CWT, spectrogram and autoregressive technique. Iran J Comput Sci 2021;1:1–6. https://doi.org/10.1007/s42044-021-00080-8.
  • [13] Gupta V, Mittal M. A novel method of cardiac arrhythmia detection in electrocardiogram signal. Int J Med Eng Inf 2020;12(5):489–99. https://doi.org/10.1504/IJMEI.2020.109943.
  • [14] Samiappan D, Chakrapani V. Classification of carotid artery abnormalities in ultrasound images using an artificial neural classifier. Int Arab J Inf Technol 2016;13(6A):756–62.
  • [15] Gupta V, Mittal M, Mittal V, et al. A critical review of feature extraction techniques for ECG signal analysis. J Inst Eng India Ser B 2021. https://doi.org/10.1007/s40031-021-00606-5.
  • [16] Samiappan D, Chakrapani V. Classification of Ultrasound Carotid Artery Images Using Texture Features. Int. Review on computers and software. 2013 April.
  • [17] Behar J, Andreotti F, Zaunseder S, Oster J, Clifford GD. A practical guide to non-invasive foetal electrocardiogram extraction and analysis. Physiol Meas 2016;37(5):R1–R35. https://doi.org/10.1088/0967-3334/37/5/R1.
  • [18] Jaros R, Martinek R, Kahankova R. Non-adaptive methods for fetal ECG signal processing: a review and appraisal 2018. Sensors 18(11), 3648. 10.3390/s18113648.
  • [19] Sulas E, Urru M, Tumbarello R, Raffo L, Sameni R, Pani D. A non-invasive multimodal foetal ECG–Doppler dataset for antenatal cardiology research. Sci Data 2021;8(1):1–9. https://doi.org/10.6084/m9.figshare.13283492.
  • [20] Gómez-Echavarría A, Ugarte JP, Tobón C. The fractional Fourier transform as a biomedical signal and image processing tool: A review. Biocybern Biomed Eng 2020;40(3):1081–93. https://doi.org/10.1016/j.bbe.2020.05.004.
  • [21] Czabański R, Jeżewski J, Horoba K, Jeżewski M. Fetal state assessment using fuzzy analysis of fetal heart rate signals-Agreement with the neonatal outcome. Biocybern Biomed Eng 2013;33(3):145–55. https://doi.org/10.1016/j.bbe.2013.07.003.
  • [22] Pauline SH, Samiappan D, Kumar R, Anand A, Kar A. Variable tap-length non-parametric variable step-size NLMS adaptive filtering algorithm for acoustic echo cancellation. Appl Acoust 2020;1(159):107074. https://doi.org/10.1016/j.apacoust.2019.107074.
  • [23] Widrow B, Glover JR, McCool JM, Kaunitz J, Williams CS, Hearn RH, et al. Adaptive noise cancelling: principles and applications. Proc IEEE 1975;63(12):1692–716. https://doi.org/10.1109/PROC.1975.10036.
  • [24] Martinek R, Kahankova R, Nazeran H, Konecny J, Jezewski J, Janku P, et al. Non-invasive fetal monitoring: A maternal surface ECG electrode placement-based novel approach for optimization of adaptive filter control parameters using the LMS and RLS algorithms. Sensors 2017;17(5):1154. https://doi.org/10.3390/s17051154.
  • [25] Praneeth CN, Abel JD, Samiappan D, Kumar R, Kumar SP, Nitin PV. A comparison on variants of LMS used in FIR adaptive noise cancellers for fetal ECG extraction. Biomed Eng - Appl Basis Commun 2020;32(04):2050026. https://doi.org/10.4015/S101623722050026X.
  • [26] Ungureanu M, Wolf W. Basic aspects concerning the event-synchronous interference canceller. IEEE Trans Biomed Eng 2006;53(11):2240–7. https://doi.org/10.1109/TBME.2006.877119.
  • [27] Ma Y, Xiao Y, Wei G, Sun J. Foetal ECG extraction using nonlinear adaptive noise canceller with multiple primary channels. IET Signal Proc 2018;12(2):219–27. https://doi.org/10.1049/sil2.v12.210.1049/iet-spr.2016.0605.
  • [28] Abel JD, Samiappan D, Kumar R, Kumar SP. Multiple Sub-Filter Adaptive Noise Canceller for Fetal ECG Extraction. Procedia Comput Sci 2019;1(165):182–8. https://doi.org/10.1016/j.procs.2020.01.093.
  • [29] Krupa AJD, Dhanalakshmi S, Kumar RA. An improved parallel sub-filter adaptive noise canceler for the extraction of fetal ECG. Biomed Eng /Biomedizinische Technik 2021. https://doi.org/10.1515/bmt-2020-0313.
  • [30] Taha LY, Abdel-Raheem E. Fetal ECG extraction using inputmode and output-mode adaptive filters with blind source separation 2020. Can J Electr Comput Eng 2020;43(4):295–304. https://doi.org/10.1109/CJECE.2020.2984602.
  • [31] Ziani S, Jbari A, Bellarbi L, Farhaoui Y. Blind maternal-fetal ECG separation based on the time-scale image TSI and SVD-ICA methods. Procedia Comput Sci 2018;134:322–7. https://doi.org/10.1016/j.procs.2018.07.179.
  • [32] Yu Q, Yan H, Song L, Guo W, Liu H, Si J, et al. Automatic identifying of maternal ECG source when applying ICA in fetal ECG extraction. Biocybern Biomed Eng 2018;38(3):448–55. https://doi.org/10.1016/j.bbe.2018.03.003.
  • [33] Yuan L, Zhou Z, Yuan Y, Wu S. An improved FastICA method for fetal ECG extraction. Comput Math Methods Med 2018. https://doi.org/10.1155/2018/7061456.
  • [34] Sameni R, Jutten C, Shamsollahi MB. Multichannel electrocardiogram decomposition using periodic component analysis. IEEE Trans Biomed Eng 2008;55(8):1935–40. https://doi.org/10.1109/TBME.2008.919714.
  • [35] Islam R, Tarique M. Blind source separation of fetal ecg using fast independent component analysis and principle component analysis. Int J Sci Technol Res 2020;9(11).
  • [36] Sarafan S, Le T, Naderi AM, Nguyen QD, Kuo BT, Ghirmai T, et al. Investigation of methods to extract fetal electrocardiogram from the Mother’s abdominal signal in practical scenarios. Technologies 2020;8(2):33. https://doi.org/10.3390/technologies8020033.
  • [37] Martinek R, Kahankova R, Jezewski J, Jaros R, Mohylova J, Fajkus M, et al. Comparative effectiveness of ICA and PCA in extraction of fetal ECG from abdominal signals: Toward noninvasive fetal monitoring. Front Physiol 2018;30(9):648. https://doi.org/10.3389/fphys.2018.00648.
  • [38] Gurve D, Krishnan S. Separation of fetal-ECG from single-channel abdominal ECG using activation scaled non-negative matrix factorization. IEEE J Biomed Health Inf 2019;24(3):669–80. https://doi.org/10.1109/JBHI.2019.2920356.
  • [39] Lee KJ, Lee B. Sequential total variation denoising for the extraction of fetal ECG from single-channel maternal abdominal ECG. Sensors 2016 Jul;16(7):1020. https://doi.org/10.3390/s16071020.
  • [40] Galli A, Peri E, Zhang Y, Vullings R, van der Ven M, Giorgi G, et al. Dedicated algorithm for unobtrusive fetal heart rate monitoring using multiple dry electrodes. Sensors 2021;21(13):4298. https://doi.org/10.3390/s21134298.
  • [41] Al-Dujaili MJ, Mezeel MT. Novel approach for reinforcement the extraction of ECG signal for Twin fetuses based on modified BSS. Wireless Pers Commun 2021 Mar;6:1–20. https://doi.org/10.1007/s11277-021-08337-y.
  • [42] Li R, Frasch MG, Wu HT. Efficient fetal-maternal ECG signal separation from two channel maternal abdominal ECG via diffusion-based channel selection. Front Physiol 2017 May;16 (8):277. https://doi.org/10.3389/fphys.2017.00277.
  • [43] Salmanvandi M, Einalou Z. Separation of twin fetal ECG from maternal ECG using empirical mode decomposition techniques. Biomed Eng - Appl Basis Commun 2017 Dec 18;29(06):1750042. https://doi.org/10.4015/S1016237217500429.
  • [44] Niknazar M, Rivet B, Jutten C. Fetal ECG extraction by extended state Kalman filtering based on singlechannel recordings. IEEE Trans Biomed 2012;60(5):1345–52. https://doi.org/10.1109/TBME.2012.2234456.
  • [45] Panigrahy D, Sahu PK. Extraction of fetal ECG signal by an improved method using extended Kalman smoother framework from single channel abdominal ECG signal. Australas Phys Eng Sci Med 2017;40(1):191–207. https://doi.org/10.1007/s13246-017-0527-5.
  • [46] Jamshidian-Tehrani F, Sameni R, Jutten C. Temporally nonstationary component analysis; application to noninvasive fetal electrocardiogram extraction. IEEE Trans Biomed Eng 2019;67(5):1377–86. https://doi.org/10.1109/TBME.2019.2936943.
  • [47] Panigrahy D, Sahu PK. Extraction of fetal electrocardiogram (ECG) by extended state Kalman filtering and adaptive neuro-fuzzy inference system (ANFIS) based on single channel abdominal recording. Sadhana 2015;40(4):1091–104. https://doi.org/10.1007/s12046-015-0381-7.
  • [48] Sana F, Ballal T, Shadaydeh M, Hoteit I, Al-Naffouri TY. Fetal ECG extraction exploiting joint sparse supports in a dual dictionary framework. Biomed Signal Process Control 2019;1(48):46–60. https://doi.org/10.1016/j.bspc.2018.08.023.
  • [49] John RG, Ramachandran KI. Extraction of foetal ECG from abdominal ECG by nonlinear transformation and estimations. Comput Methods Programs Biomed 2019;1(175):193–204. https://doi.org/10.1016/j.cmpb.2019.04.022.
  • [50] Martinek R, Kahankova R, Nedoma J, Fajkus M, Cholevova K. Fetal ECG preprocessing using wavelet transform. In: Proc 10th Int Conf Comput Model Simul; 2018 Jan 8 (pp. 39-43).
  • [51] Mollakazemi MJ, Asadi F, Tajnesaei M, Ghaffari A. Fetal QRS detection in noninvasive abdominal electrocardiograms using principal component analysis and discrete wavelet transforms with signal quality estimation. J Biomed Phys Eng. 2016 Sep 25. 10.31661/JBPE.V0I0.397.
  • [52] Alshebly YS, Nafea M. Isolation of fetal ECG signals from abdominal ECG using wavelet analysis. IRBM 2020;41(5):252–60. https://doi.org/10.1016/j.irbm.2019.12.002.
  • [53] De Moor B, De Gersem P, De Schutter B, Favoreel W. DAISY: A database for identification of systems. J A 1997;38:4–5.
  • [54] Andreotti F, Behar J, Zaunseder S, Oster J, Clifford GD. An open-source framework for stress-testing noninvasive foetal ECG extraction algorithms. Physiol Meas 2016;37(5):627. https://doi.org/10.1088/0967-3334/37/5/627.
  • [55] Khalilzadeh, Mina, Alireza Abdollahi, Farhad Abdolahi, Amir Hossein Abdolghaffari, Ahmad Reza Dehpour, Farahnaz Jazaeri, Protective effects of magnesium sulfate against doxorubicin induced cardiotoxicity in rats. Life Sci 207 (2018): 436-441.
  • [56] Zhang D, Liao X, Yang B, Zhang Y. A fast and efficient approach to color-image encryption based on compressive sensing and fractional Fourier transform. Multimedia Tools Appl 2018;77(2):2191–208. https://doi.org/10.1007/s11042-017-4370-1.
  • [57] Gupta V, Mittal M. Arrhythmia detection in ECG signal using fractional wavelet transform with principal component analysis. J Inst Eng (India): Series B 2020;101(5):451–61. https://doi.org/10.1007/s40031-020-00488-z.
  • [58] Bajaj A, Kumar S. QRS complex detection using fractional Stockwell transform and fractional Stockwell Shannon energy. Biomed Signal Process Control 2019;54. https://doi.org/10.1016/j.bspc.2019.101628 101628.
  • [59] McBride AC, Kerr FH. On Namias’s fractional Fourier transforms. IMA J Appl Math 1987 Jan 1;39(2):159–75. https://doi.org/10.1093/imamat/39.2.159.
  • [60] Shao Z, He J, Feng S. Separation of multicomponent chirp signals using morphological component analysis and fractional Fourier transform. IEEE Geosci Remote Sens Lett 2019;17(8):1343–7. https://doi.org/10.1109/LGRS.2019.2945008.
  • [61] de Oliveira Neto JR, Lima JB, da Silva Jr GJ, de Souza RMC. Computation of an eigendecomposition-based discrete fractional Fourier transform with reduced arithmetic complexity. Signal Process 2019;165:72–82. https://doi.org/10.1016/j.sigpro.2019.06.032.
  • [62] Gupta V, Mittal M. A comparison of ECG signal pre-processing using FrFT, FrWT and IPCA for improved analysis. IRBM 2019;40(3):145–56. https://doi.org/10.1016/j.irbm.2019.04.003.
  • [63] Gupta V, Mittal M, Mittal V. Performance evaluation of various pre-processing techniques for R-peak detection in ECG signal. IETE J Res 2020;11:1–6. https://doi.org/10.1080/03772063.2020.1756473.
  • [64] Behar J, Johnson A, Clifford GD, Oster J. A comparison of single channel fetal ECG extraction methods. Ann Biomed Eng 2014;42(6):1340–53. https://doi.org/10.1007/s10439-014-0993-9.
  • [65] Behar J, Oster J, Clifford GD. Combining and benchmarking methods of foetal ECG extraction without maternal or scalp electrode data. Physiol Meas 2014;35(8):1569. https://doi.org/10.1088/0967-3334/35/8/1569.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45863316-68dc-4958-babc-62df718114d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.