Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Advances in cementitious composites and nanotechnologies have led to the development of self-compacting concrete (SCC) modified with nanoparticles. SCC with Al2O3 nanoparticles was used in this study. In addition, a reference sample of SCC without an addition of nanoparticles was investigated. First, the micro-mechanical properties of each phase of the composites were examined using the statistical nanoindentation techniques and deconvo-lution. Then, the interfacial transition zone (ITZ) was investigated using line indentation and X-ray microCT. The results indicated that the ITZ played no significant role in the compo-sites. Subsequently, modified Mori–Tanaka and self-consistent homogenization schemes, accounting for random variability of constituent properties, were applied to evaluate the overall elastic properties of the composites. Then, macroscale laboratory (uniaxial compres-sion) tests were carried out to verify the adopted approach. The results of the micro- and macroscale tests showed that the proposed laboratory investigation procedure and homog-enization approach were proper. Finally, the modified Mori–Tanaka scheme was used to verify the influence of material composition on the effective elastic modulus of SCC with Al2O3 nanoparticles.
Czasopismo
Rocznik
Tom
Strony
1150--1162
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
autor
- Wroclaw University of Science and Technology, Faculty of Civil Engineering, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
autor
- Wroclaw University of Science and Technology, Faculty of Civil Engineering, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
autor
- Wroclaw University of Science and Technology, Faculty of Civil Engineering, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
autor
- Wroclaw University of Science and Technology, Faculty of Civil Engineering, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
Bibliografia
- [1] H. Okamura, K. Ozawa, M. Ouchi, Self-compacting concrete, Struct. Concr. 1 (2000) 3–17.
- [2] H. Li, H.G. Xiao, J.P. Ou, A study on mechanical and pressure- sensitive properties of cement mortar with nanophase materials, Cem. Concr. Res. 34 (2004) 435–438.
- [3] A. Nazari, S. Riahi, S.F. Riahi, A. Shamekhi, Khademno, Influence of Al2O3 nanoparticles on the compressive strength and workability of blended concrete, J. Am. Sci. 6 (2010) 6–9.
- [4] E. Mohseni, B.M. Miyandehi, J. Yang, M.A. Yazdi, Single and combined effects of nano-SiO2, nano-Al2O3 and nano-TiO2 on the mechanical, rheological and durability properties of self-compacting mortar containing fly ash, Constr. Build. Mater. 84 (2015) 331–340.
- [5] J.J. Gaitero, I. Campillo, P. Mondal, S.P. Shah, Small changes can make a great difference, Transport. Res. Rec.: J. Transport. Res. Board 2141 (2010) 1–5.
- [6] T. Ji, Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2, Cem. Concr. Res. 35 (2005) 1943–1947.
- [7] K.L. Scrivener, A.K. Crumbie, P. Laugesen, The interfacial transition zone (ITZ) between cement paste and aggregate in concrete, Interface Sci. 12 (2004) 411–421.
- [8] W. Pichór, The interfacial transition zone between filler and matrix in cement based composites with cenospheres, Composites 6 (2006) 71–77.
- [9] R. Zimbelmann, A contribution to the problem of cement-aggregate bond, Cem. Concr. Res. 15 (1985) 801–808.
- [10] J. Huang, Microstructural Study of the Interfacial Transition Zone in Concrete using Backscatter-Mode Scanning Electron Microscopy with Image Analysis, PhD thesis, University of Purdue, Purdue, 1998.
- [11] Y. Gao, G. de Schutter, G. Ye, Z. Tan, K. Wu, The ITZ microstructure, thickness and porosity in blended cementitious composite: effects of curing age, water to binder ratio and aggregate content, Compos. Part B: Eng. 60 (2014) 1–13.
- [12] G. Sherzer, P. Gao, E. Schlangen, G. Ye, E. Gal, Upscaling cement paste microstructure to obtain the fracture, shear, and elastic concrete mechanical LDPM parameters, Materials 10 (2017) 242.
- [13] V.P. Nguyen, M. Stroeven, L.J. Sluys, Multiscale continuous and discontinuous modeling of heterogeneous materials: a review on recent developments, J. Multiscale Modell. 3 (2011) 229–270.
- [14] R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. Sect. A 65 (1952) 349–354.
- [15] Z. Hashin, S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids 11 (1963) 127–140.
- [16] J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. Ser. A: Math. Phys. Sci. 241 (1957) 376–396.
- [17] T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metal. 21 (1973) 571–574.
- [18] R. Hill, A self-consistent mechanics of composite materials, J. Mech. Phys. Solids 13 (1965) 213–222.
- [19] A. Qsymah, R. Sharma, Z. Yang, L. Margetts, P. Mummery, Micro X-ray computed tomography image-based two-scale homogenisation of ultra high performance fibre reinforced concrete, Constr. Build. Mater. 130 (2017) 230–240.
- [20] F.P. Zhou, F.D. Lydon, B.I.G. Barr, Effect of coarse aggregate on elastic modulus and compressive strength of high performance concrete, Cem. Concr. Res. 25 (1995) 177–186.
- [21] G. Constantinides, F.J. Ulm, The effect of two types of CSH on the elasticity of cement-based materials: results from nanoindentation and micromechanical modeling, Cem. Concr. Res. 34 (2004) 67–80.
- [22] D. Breysse, Presentation of common non destructive techniques, in: D. Breysse (Ed.), Non-Destructive Assessment of Concrete Structures: Reliability and Limits of Single and Combined Techniques, Springer Science + Business Media, Dordrecht, 2012 17–117.
- [23] M. Musial, J. Grosel, Determining the Young's modulus of concrete by measuring the eigenfrequencies of concrete and reinforced concrete beams, Constr. Build. Mater. 121 (2016) 44–52.
- [24] P. Niewiadomski, A. C´wirzen, J. Hola, The influence of an additive in the form of selected nanoparticles on the physical and mechanical characteristics of self-compacting concrete, Proc. Eng. 111 (2015) 601–606.
- [25] G.M. Pharr, W.C. Oliver, Nanoindentation of silver-relations between hardness and dislocation structure, J. Mater. Res. 4 (1989) 94–101.
- [26] B. Bhushan, V.S. Williams, R.V. Shack, In-situ nanoindentation hardness apparatus for mechanical characterization of extremely thin films, J. Tribol. 110 (1988) 563–571.
- [27] M. Lukovic´, E. Schlangen, G. Ye, Combined experimental and numerical study of fracture behaviour of cement paste at the microlevel, Cem. Concr. Res. 73 (2015) 123–135.
- [28] M. Rajczakowska, D. Lydzba, Durability of crystalline phase in concrete microstructure modified by the mineral powders: evaluation by nanoindentation tests, Stud. Geotech. Mech. 38 (2016) 65–74.
- [29] K.J. Krakowiak, Assessment of the Mechanical Microstructure of Masonry Clay Brick by Nanoindentation, PhD thesis, University of Minho, Minho, 2011.
- [30] I.N. Sneddon, The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile, Int. J. Eng. Sci. 3 (1965) 47–57.
- [31] W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology, J. Mater. Res. 19 (2004) 3–20.
- [32] F.J. Ulm, M. Vandamme, C. Bobko, J.A. Ortega, K. Tai, C. Ortiz, Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale, J. Am. Ceram. Soc. 90 (2007) 2677–2692.
- [33] K. Wu, H. Shi, L. Xu, G. Ye, G. de Schutter, Microstructural characterization of ITZ in blended cement concretes and its relation to transport properties, Cem. Concr. Res. 79 (2016) 243–256.
- [34] C. Bywalski, M. Rajczakowska, L. Sadowski, Barrage lock concrete porosity evaluation using X-ray microtomography, Key Eng. Mater. 662 (2015) 161–164.
- [35] B.P. Flannery, H.W. Deckman, W.G. Roberge, K.L. D'Amico, Three-dimensional X-ray microtomography, Sci. 237 (1987) 1439–1445.
- [36] L.A. Feldkamp, L.C. Davis, J.W. Kress, Practical cone-beam algorithm, J. Opt. Soc. Am. A 1 (1984) 612–619.
- [37] CEN EN 12390, Testing Hardened Concrete – Part 13: Determination of Secant Modulus of Elasticity in Compression, European Committee for Standardization, Brussels, 2014.
- [38] L. Sorelli, G. Constantinides, F.J. Ulm, F. Toutlemonde, The nano-mechanical signature of ultra high performance concrete by statistical nanoindentation techniques, Cem. Concr. Res. 38 (2008) 1447–1456.
- [39] D. Damidot, K. Velez, F. Sorrentino, Characterization of interstitial transition zone (ITZ) of high performance cement by nanoindentation technique, in: G. Grieve, G. Owens (Eds.), Proceeding of the 11th International Congress on the Chemistry of Cement: Cement's Contribution to Development in the 21st Century, Cement Concrete Institute of South Africa, Durban, 2003 314–323.
- [40] M. Miller, C. Bobko, M. Vandamme, F.J. Ulm, Surface roughness criteria for cement paste nanoindentation, Cem. Concr. Res. 38 (2008) 467–476.
- [41] M. Kursa, K. Kowalczyk-Gajewska, M.J. Lewandowski, H. Petryk, Elastic-plastic properties of metal matrix composites: Validation of mean-field approaches, Eur. J. Mech. A: Solids 68 (2018) 53–66.
- [42] D. Lydzba, Effective Properties of Composites: Introduction to Micromechanics, Wroclaw University of Technology, PRINTPAP, Wroclaw, 2011.
- [43] S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, 16th ed., Springer Science + Business Media, New York, 2013.
- [44] D. Lydzba, A. Rózanski, M. Rajczakowska, D. Stefaniuk, Random checkerboard based homogenization for estimating effective thermal conductivity of fully saturated soils, J. Rock Mech. Geotech. Eng. 9 (2017) 18–28.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45837119-b6f4-4dcc-a4ed-ae30fa93288d