PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Global buckling prevention condition of all-steel buckling restrained braces

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the key requirements for the desirable mechanical behavior of buckling restrained braces (BRBs) under severe lateral loading is to prevent overall buckling until the brace member reaches sufficient plastic deformation and ductility. This paper presents finite element analysis results of proposed all-steel buckling restrained braces. The proposed BRBs have identical core sections but different Buckling Restraining Mechanisms (BRMs). The objective of the analyses is to conduct a parametric study of BRBs with different amounts of gaps and cores and BRM contact friction coefficients to investigate the global buckling behavior of the brace. The results of the analyses showed that BRM flexural stiffness could significantly affect the global buckling behavior of a BRB. However, the global buckling response occurred to be strongly dependent upon the magnitude of the friction coefficient between the core and the encasing contact surfaces. In addition, the results showed that the global buckling response of BRBs with direct contact of the core and BRM is more sensitive to the magnitude of contact friction coefficient.
Rocznik
Strony
891--902
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Sahand University of Technology, Faculty of Civil Engineering, Sahand, Tabriz, Iran
autor
  • Sahand University of Technology, Faculty of Civil Engineering, Sahand, Tabriz, Iran
Bibliografia
  • 1. ABAQUS, Standard user’s manual version 6.3, 2005, Pawtucket, RI: Hibbitt, Karlsson & Sorensen, Inc.
  • 2. AISC (American Institute of Steel Construction), 2005, Seismic provisions for structural steel buildings, Chicago, IL
  • 3. Black C.J., Makris N., Aiken I.D., 2002, Component Testing, Stability Analysis, and Characterization of Buckling Restrained Braced Frames, Report No. PEER 2002/08, California, Berkeley, CA
  • 4. Chou C., Chen S., 2010, Sub-assemblage tests and finite element analyses of sandwiched buckling restrained braces, Engineering Structures, 32, 2108-2121
  • 5. Clark P., Aiken I., Kasai K., Ko E., Kimura I., 1999, Design procedures for buildings incorporating hysteretic damping devices, Proceedings of 69th Annual Convention, SEAOC, Sacramento, USA
  • 6. Eryasar M., Topkaya C., 2010, An experimental study on steel-encased buckling restrained brace hysteretic damper, Earthquake Engineering and Structural Dynamics, 39, 561-581
  • 7. Fahnestock L.A., Sause R., Ricles J.M., 2007, Seismic response and performance of buckling-restrained braced frames, Journal of Structural Engineering, 133, 9, 1195-1204
  • 8. Fujimoto M., Wada A., Saeki E., Watanabe A., Hitomi Y., 1988, A study on the unbonded brace encased in buckling restraining concrete and steel tube, Journal of Structural and Construction Engineering, 34B, 249-258
  • 9. Inoue K., Sawaizumi S., Higashibata Y., 2001, Stiffening requirements for unbonded braces encased in concrete panels, ASCE Journal of Structural Engineering, 127, 6, 712-719
  • 10. Iwata M., Murai M., 2006, Buckling-restrained brace using steel mortar planks performance evaluations as hysteretic damper, Earthquake Engineering and Structural Dynamics, 35, 1807-1826
  • 11. Kato M., Usami T., Kasai A., 2002, A numerical study on cyclic elasto-plastic behavior of buckling-restraining brace members, Journal of Structural and Construction Engineering, 48A, 641-648
  • 12. Kinoshita T., Koetaka Y., Inoue K., Iitani K., 2007, Criteria of buckling-restrained braces to prevent out-of-plane buckling, Journal of Structural and Construction Engineering, 621, 141-148
  • 13. Korzekwa A., Tremblay R., 2009, Behavior of Steel Structures in Seismic Areas, Taylor & Francis Group, London, Chap. 94
  • 14. Matsui R., Takeuchi T., Hajjar J.F., Nishimoto K., Aiken, I., 2008, Local buckling restraint condition for core plates in buckling-restrained braces, Proceeding of 14th World Conference on Earthquake Engineering, Beijing, China
  • 15. Qiang X., 2005, State of the art of buckling-restrained braces in Asia, Journal of Constructional Steel Research, 61, 727-748
  • 16. Sabelli R., Mahin S., Chang C., 2003, Seismic demands on steel braced frame buildings with buckling-restrained braces, Engineering Structures, 5, 655-666
  • 17. Takeuchi T., Suzuki K., Marukawa T., Kimura Y., Ogawa T., Sugiyama T., 2005, Performance of compressive tube members with buckling restrained composed of mortar in-filled steel tube, Journal of Structural and Construction Engineering, 590, 71-78
  • 18. Tembata H., Koetaka Y., Inoue K., 2004, Out-of-plane buckling load of buckling restrained braces including brace joints, Journal of Structural and Construction Engineering, 581, 127-134
  • 19. Tremblay R., Bolduc P., Neville R, DeVall R., 2006, Seismic testing and performance of buckling restrained bracing systems, Canadian Journal of Civil Engineering, 33, 1, 183-198
  • 20. Usami T., 2006, Guidelines for Seismic and Damage Control Design of Steel Bridges, Japanese Society of Steel Construction, Gihodo-Shuppan, Tokyo, Japan
  • 21. Watanabe A., Hitomi Y., Yaeki E., Wada A., Fujimoto M., 1988, Properties of braces encased in buckling-restraining concrete and steel tube, Proceedings of 9th World Conference on Earthquake Engineering, 719-724
  • 22. Watanabe N., Kato M., Usami T., Kasai A., 2003, Experimental study on cyclic elasto-plastic behavior of buckling-restraining braces, Journal of Earthquake Engineering, 133
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-457fa282-8adf-487a-a913-ff3c3607ba28
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.