PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Fabrication of Monophasic Strontium Doped Calcium Silicate Granules With Enhanced Osteogenic Performance In The Reconstruction Of Rabbit Bone Defect

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Advances in the design and manufacturing of novel synthetic bioactive scaffolds as bone substitute in bone reconstruction are at the forefront of orthopedic study due to their excellent biological performances. However, fabricating bioactive scaffolds with similar osteogenic and mechanical properties of a natural bone still remains a challenge. Our aim was to produce functional bioactive scaffolds with biologically interactive ions, microstructure for cell proliferation and a suitable biodegradation rate in critical-size bone defect.
Rocznik
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Orthopedics, The Second People’s Hospital of Hefei, Hefei, Anhui 230011, China
  • Department of Orthopedic Surgery, the Second Affiliated hospital, School of Medicine of Zhejiang University, Hangzhou 310009, Zhejiang,China
autor
  • Department of Orthopedics Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Xiaoshan Traditional Hospital Yucai Road-152, Xiaoshan District, Hangzhou, Zhejiang, China
Bibliografia
  • [1] ARSLAM-YILDIZ A., ASSAL R.E., CHEN P., INCI F., DEMIRCI U. Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication,2016, 8:014103.
  • [2] CACCHIOLI A., SPAGGIARI B., RAVANETTI F., MARTINI F.M., BORGHETTI P., GABBI C.The critical sized bone defect: morphological study of bone healing. Ann Fac Med Vet di Parma, 2006, XXVI: 97–110.
  • [3] ELFEKI H., FIALLO M., SHARROCK P., MBARKI M. Hydroxyapatite bioceramic with large porosity. Mater Sci Eng C,2017, 76:985–990.
  • [4] FERRACANE J.L., COOPER P.R.,SMITH A.J. “Can interaction of materials with the dentin-pulp complex contribute to dentin regeneration?,” Odontology, 2010, vol. 98, 1:2–14.
  • [5] GANDOLFI M.G., CIAPETTI G., TADDEI P., PERUT F., TINTI A., CARDOSO M.V., MEERBEEK B., PRATI C. Apatite formation on bioactive calcium-silicate cements for dentistry affects surface topography and human marrow stromal cells proliferation. Dent Mater, 2010, 26:974–992.
  • [6] GANDOLFI M.G., SIBONI F., BOTERO T., BOSSÙ M., RICCITIELLO F., PRATI C. Calcium silicate and calcium hydroxide materials for pulp capping: Biointeractivity, porosity, solubility and bioactivity of current formulations. J Appl Biomater Funct Mater,2015, 13:43–60.
  • [7] GANDOLFI M.G., TADDEI P., MODENA E., SIBONI F., PRATI C. Biointeractivity-related versus chemi/physisorption-related apatite precursorforming ability of current root end filling materials. J Biomed Mater Res,2013, 101:1107–1123.
  • [8] GANDOLFI M.G, VAN LANDUYT K., TADDEI P., MODENA E., VAN MEERBEEK B., PRATI C. Environmental Scanning Electron Microscopy Connected with Energy Dispersive X-ray Analysis and Raman Techniques to Study ProRoot Mineral Trioxide Aggregate and Calcium Silicate Cements in Wet Conditions and in Real Time. J Endod,2010, 36:851–857.
  • [9] GHAMOR-AMEGAVI E.P., YANG X.Y. , FU J. , PAN Z.J., ZHUANG C., KE X.R. , ZHANG L. , XIE L.J., GAO C.Y., GOU Z.R. Yolk-porous shell biphasic bioceramic granules enhancing bone regeneration and repair beyond homogenous hybrid. Materials Science & Engineering C,2019, 100: 433–444.
  • [10] GU Z., WANG H., LI L., WANG Q., YU X. Cell-mediated degradation of strontium-doped calcium polyphosphate scaffold for bone tissue engineering. Biomed Mater, 2012, 7 065007.
  • [11] HINA A., NANCOLLAS G. H. Alpha calcium sulfate hemihydrate and a method of making alpha calcium sulfate hemihydrate. International Patent, 2001,WO 0179116.
  • [12] HUANG Y., WU C., ZHANG X., CHANG J., DAI K. Regulation of immune response by bioactive ions released from silicate bioceramics for bone regeneration. Acta Biomater,2018, 66:81–92.
  • [13] HUH S.Y., GORDON C.M. Vitamin d deficiency in children and adolescents: epidemiology, impact and treatment. Endocr Metab Disord, 2008, 9:161–70.
  • [14] JASTY M., BRAGDON C.R., SCHUTZER S., RUBASH H., HAIRE T., HARRIS WH. Bone ingrowth into porous coated canine total hip replacements. Quantification by backscattered scanning electron microscopy and image analysis. Scanning Microsc,1989, 3:1051–1057.
  • [15] JONES J.R. New trends in bioactive scaffolds: The importance of nanostructure. J. Eur. Ceram. Soc,2009, 29:1275–1281.
  • [16] LIN K., CHANG J., ZENG Y., QIAN W.J. Preparation of macroporous calcium silicate ceramics. Mater Lett,2004, 58:2109–13.
  • [17] LI Q, WU Y, KANG N. Marrow adipose tissue: its origin, function, and regulation in bone remodeling and regeneration. Stem Cells Int., 2018, 2018: 7098456.
  • [18] LIU Z.H., HE X.Y., CHEN S.P., YU H.M. Advances in the use of calcium silicatebased materials in bone tissue engineering. Ceramics International, 2023, 49:19355–19363.
  • [19] MENG W., ZHANG W.X., ZHANG X., NASIRI-TABRIZI B, LI Q. Doping effects of Pd2+ on physicochemical and biomechanical properties of calcium silicate in nano-regime towards treating osteoporotic bone. Mater Chem Phys,2021, 267:124609.
  • [20] MESTRES G., LE VAN C., GINEBRA M.P. Silicon-stabilized α-tricalcium phosphate and its use in a calcium phosphate cement: characterization and cell response. Acta Biomater., 2012, 8:1169–1179.
  • [21] MIZUNO M, BANZAI Y. Calcium ion release from calcium hydroxide stimulated fibronectin gene expression in dental pulp cells and the differentiation of dental pulp cells to mineralized tissue forming cells by fibronectin. Int Endod J, 2008, 41:933–988.
  • [22] NI S, CHANG J, CHOU L. A novel bioactive porous CaSiO3 scaffold for bone tissue engineering. J Biomed Mater Res Part A, 2006, 76:196–205.
  • [23] NIU L.N, JIAO K., WANG T.D., ZHANG W., CAMILLERI J., BERGERON B.E., FENG H.L.,MAO J., CHEN J.H., PASHLEY D.H., TAY F.R. A review of the bioactivity of hydraulic calcium silicate cements. Journal of Dentistry.2014, 42(5): 517–533.
  • [24] ONO N., KRONENBERG H.M. Bone repair and stem cells. Curr. Opin. Genet. Dev., 2016, 40:103–107.
  • [25] PARFITT A.M. The two faces of growth: benefits and risks to bone integrity. Osteoporosis Int, 1994, 4:382–98.
  • [26] PEREZ J.R., KOUROUPIS D., LI D.J., BEST T.M., KAPLAN L., CORREA D. Tissue engineering and cell-based therapies for fractures and bone defects. Front Bioeng Biotechnol, 2018, 6.
  • [27] RUAN Z., YAO D., XU Q., LIU L., TIAN Z., ZHU Y. Effects of mesoporous bioglass on physicochemical and biological properties of calcium sulfate bone cements. Appl Mater Today, 2017, 9:612–621.
  • [28] SCHEMITSCH E.H. Size matters: defining critical in bone defect size!. J Orthop Trauma,2017, 31:S20–S22.
  • [29] SHAO H., KE X., LIU A., SUN M., HE Y., YANG X., FU J., LIU Y., ZHANG L., YANG G. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect. Biofabrication, 2017, 9: 025003.
  • [30] SIQUEIRA J.F., LOPES H.P. “Mechanisms of antimicrobial activity of calcium hydroxide: a critical review”. International Endodontic Journal, 1999, vol 32, 5:361–369.
  • [31] SUZUKI T., MIYAMOTO T., FUJITA N., NINOMIYA K., IWASAKI R., TOYAMA Y. Osteoblast-specific Angiopoietin 1 overexpression increases bone mass. Biochem Biophys Res Commun, 2007, 362(4): 1019e1025.
  • [32] TAMBURSTUEN M.V., RESELAND J.E., SPAHR A., BROOKES S.J., KVALHEIM G., SLABY I. Ameloblastin expression and putative autoregulation in mesenchymal cells suggest a role in early bone formation and repair. Bone, 2011, 48(2): 406e413.
  • [33] WANG J.C., ZHANG L., SUN X.L., CHEN X.Y., XIE K.L., LIN M.A., YANG G.J., XUS.Z., XIAW., GOU Z.R. Preparation and in vitro evaluation of strontiumdoped calcium silicate/gypsum bioactive bone cement. Biomed Mater, 2014, 9:045002.
  • [34] WANG X., ZHOU Y., XIA L., ZHAO C., CHEN L.D., CHANG J., HUANG L., ZHENG X, ZHU H. Fabrication of nano-structured calcium silicate coatings with enhanced stability, bioactivity and osteogenic and angiogenic activity. Colloids Surf. B Biointerfaces, 2015, 126:358–366.
  • [35] WEI C.K, DING S.J. Acid-resistant calcium silicate-based composite implants with high-strength as load-bearing bone graft substitutes and fracture fixation devices. J Mech Behav. Biomed Mater,2016, 62:366–383.
  • [36] WIERZCHOS J., FALCIONI T., KICIAK A., WOLINSKI J., KOCZOROWSKI R., CHOMICKI P., POREMBSKA M., ASCASO C. Advances in the ultrastructural study of the implant-bone interface by backscattered electron imaging. Micron. Int. Res. Rev. J. Microsc, 2008, 39:1363–1370.
  • [37] WU C, RAMASWAMY Y, KWIK D AND ZREIQAT H. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties. Biomaterials, 2007, 28:3171-3181.
  • [38] XIE Y., RUSTOM L.E., MCDERMOTT A.M., BOERCKEL J.D., JOHNSON A.J.W., ALLEYNE A.G., HOELZLE D.J. Net shape fabrication of calcium phosphate scaffolds with multiple material domains. Biofabrication,2016, 8: 015005.
  • [39] ZAIDI N., NIXON A.J. Stem cell therapy in bone repair and regeneration, in Skeletal Biology and Medicine. Pt B: Disease Mechanisms and Therapeutic Challenges,2007, 62–72.
  • [40] LIU Z.H, HE X.Y, CHEN S.P, YU H.M. Advances in the use of calcium silicatebased materials in bone tissue engineering. Ceramics International, 2023, 49:19355–19363.
Uwagi
Brak numeracji stron
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-457da795-0098-4eb1-883b-4e22a44a6ad5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.