PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High temperature transformation of iron-bearing minerals in basalt: Mössbauer spectroscopy studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The high temperature decomposition of basalt from Lower Silesia (Poland) was followed by Mössbauer spectroscopy investigation. The Fe content of the sample was ~9.0 at.%. The X-ray diffraction analysis shows that augite (37%) and olivine (12%) are major Fe-bearing mineral components. The sample also contains significant amount of anorthite (22%) and nepheline (17%). The sample was heated at various temperatures between 200o C and 1100o C for three hours. Up to a temperature of 500o C changes in contribution of Fe-bearing minerals are insignificant. Heating in the temperature range from 500o C to 1100o C leads to a systematic increase in contribution of iron oxides at the cost of contribution of silicate minerals, like augite and olivine. Mössbauer spectrum obtained after heating at 1100o C showed hematite as the main iron oxide phase. The ratio of Fe3+/Fetot in the non-heated sample was equal to 0.51 and after heating at 1100o C this ratio amounted to 0.89.
Czasopismo
Rocznik
Strony
10--19
Opis fizyczny
Bibliogr. 32 poz., tab., wykr.
Twórcy
  • Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
  • Institute of Physics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
  • Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
Bibliografia
  • Al-Baijat, H., & Benedetti, A. (2013). Comparison between Composite Column Using Limestone and Basalt Concrete. Open Journal of Civil Engineering, 3, 1-6. DOI:10.4236/ojce.2013.31001.
  • Barcova, K., Mashlan, M., & Martinec, M. (2003). Mössbauer study of transformation mechanism of Fe cations in olivine after thermal treatments in air. Journal of Radioanalytical and Nuclear Chemistry, 255(3), 529– 533. DOI: 10.1023/A:1022588500878.
  • Burkhard, D.J.M. (2001). Crystallization and Oxidation of Kilauea Basalt Glass: Processes during Reheating Experiments. Journal of Petrology, 42(3), 507–527. DOI:10.1093/petrology/42.3.507.
  • Brown, D.A., Sawicki, J.A., & Sherriff, B.L. (1998). Alteration of microbially precipitated iron oxides and hydroxides. American Mineralogist, 83, 1419–1425.
  • Chen, M., Liu, J., & Wu, Z. (2022). Effect of Fe2O3 Concentration on the Properties of Basalt Glasses. Journal of Natural Fibers, 19(2), 575-585. DOI:10.1080/15440478.2020.1758277.
  • Dyar, M.D., Klima, R., Fleagle, A., & Peel, S. (2013). Fundamental Mössbauer parameters of synthetic Ca-Mg-Fe pyroxenes. American Mineralogist, 98, 1172–1186. DOI:10.2138/am.2013.4333.
  • Felippi de Lima, L., Zorzi, J., & Cruz, R. (2022), Basaltic glass-ceramic: A short review. Boletín de la Sociedad Española de Cerámica y Vidrio, 61, 2-12. DOI: 10.1016/j.bsecv.2020.07.005.
  • Gialanella, S., Girardi, F., Ischia, G., Lonardelli, I., Mattarelli, M., & Montagna M. (2010). On the goethite to hematite phase transformation. Journal of Thermal Analysis and Calorimetry, 102, 867–873. DOI: 10.1007/s10973-010-0756-2.
  • Gunnlaugsson, H.P., Rasmussen, H., Kristjánsson, L., Steinthorsson, S., Helgason, Ö., Nørnberg, P., Madsen, M.B., & Mørup, S. (2008). Mössbauer spectroscopy of magnetic minerals in basalt on Earth and Mars. Hyperfine Interactions, 182, 87–101. DOI:10.1007/s10751-008-9714-9.
  • Hassan, K.M. (2015). The Iron Mineralogy of Eocene Fossil Wood - a Mössbauer Study of Samples from the Petrified Forest, New Cairo, Egypt. The Canadian Mineralogist, 53(4), 705–716. DOI: 10.3749/canmin.1400108.
  • Hassan, K.M., & Dekan, J. (2013). Mössbauer study of Fe phases in terrestrial olivine basalts from southern Egypt. Mineralogia, 44(1-2), 3-12. DOI: 10.2478/mipo-2013-0001.
  • Kądziołka-Gaweł, M., Adamczyk, Z., & Kalinowski, L. (2019). Mössbauer study of changes in olivine after heating in air. The Canadian Mineralogist, 57, 105-115. DOI:10.3749/canmin.1700074.
  • Kądziołka-Gaweł, M., Dulski, M., Kalinowski, L., & Wojtyniak, M. (2018). The effect of gamma irradiation on the structural properties of olivine. Journal of Radioanalytical and Nuclear Chemistry, 317, 261–268. DOI:10.1007/s10967-018-5849-6.
  • Khisina, N., Khramov, D., Kolosov, M., Klesehev, A., & Taylor, L.A. (2005). Formation of Ferriolivine and Magnesioferrite from Mg – Fe-Olivine: Reactions and Kinetics of Oxidation. Physics and Chemistry of Minerals, 22(4), 241-250. DOI: 10.1007/BF00202257.
  • Komadel, P., Anastácio, A., Andrejkovičová, S., & Stucki, J. (2008). Iron phases identified in bentonite from the Lieskovec deposit (Slovakia) by variable temperature: Mössbauer spectroscopy. Clay Minerals, 43(1), 107–115. DOI: 10.1180/claymin.2008.043.1.08.
  • Lakshman, A., Subba Raob, P., & Raob, K. (2004). Mössbauer spectroscopic analyses of Mg0.9Mn0.1InxFe2-xO4 spinel ferrites. Journal of Magnetism and Magnetic Materials, 284, 352–357. DOI: 10.1016/j.jmmm.2004.06.058.
  • Liu, Q., Shaw, M., Parnas, R., & McDonnell, A. (2006). Investigation of Basalt Fiber Composite Mechanical Properties for Applications in Transportation. Polimer Composites, 27, 41-48. DOI: 10.1002/pc.20162.
  • Malczewski, D., Jeleń, M., Żaba, J., Błachowski, A., Ruebenbauer, K., & Dziurowicz, M. (2017). Identification of iron-bearing minerals in basalts and pillow lavas of the Kaczawa mountains using 57Fe Mössbauer spectroscopy. Nukleonika, 62(2), 145-148. DOI: 10.1515/nuka2017-0021.
  • Monaldo, E., Nerilli, F., & Gairo, G. (2019). Basalt-based fiber-reinforced materials and structural applications in civil Engineering. Composite Structures, 214, 246–263. DOI: 10.1016/j.compstruct.2019.02.002.
  • Morimoto, N. (1988). Nomenclature of Pyroxenes. Mineralogy and Petrology, 39, 55-76.
  • Morozov, M., Brinkmann, Ch., Lottermoser, W., Tippelt, G., Amthauer, G., & Kroll, H. (2005). Octahedral cation partitioning in Mg,Fe2+-olivine. Mössbauer spectroscopic study of synthetic (Mg0.5Fe2+0.5)2SiO4 (Fa50). European Journal of Mineralogy, 17, 495-500. DOI:10.1127/0935-1221/2005/0017-0495.
  • Murad, E., & Cashion, J. (2004). Mössbauer spectroscopy of environmental materials and their industrial utilization. Kluwer Academic Publishers, Norwell, Massachusetts. 417 p.
  • Osacký, M., Honty, M., Madejová, J., Bakas, T., & Šucha, V. (2009). Experimental interactions of Slovak bentonites with metallic iron. Geologica Carpathica, 60(6), 535-543. DOI: 10.2478/v10096-009-0039-7.
  • Özdemir, Ö., & Dunlop, D. (2000). Intermediate magnetite formation during dehydration of goethite. Earth and Planetary Science Letters, 177, 59-67. DOI: 10.1016/S0012-821X(00)00032-7.
  • Rivas-Sanchez, M.L., Alva-Valdivia, L.M., Arenasalatorre, J., Urrutia-Fucugauchi, J., Perrin, M., Goguitchaichvili, A., Ruiz-Sandoval, M., & Ramos Molina, M.A. (2009). Natural magnetite nanoparticles from an iron-ore deposit: size dependence on magnetic properties. Earth, Planets and Space, 61, 151–160. DOI: 10.1186/BF03352895.
  • Scorzelli, R., Souza Azevedo, I., Stewart, S., Varela, M., & Kurat, G. (2005). Druse Pyroxenes in D’Orbigny: A Mössbauer Spectroscopy Study [Abstract]. AIP Conference Proceedings, 795, 214. DOI: 10.1063/1.2128361.
  • Sunny, J.E., Varghese, R.A., Sagar, S., John, S., & Kassim, R. (2020). Application of Basalt and its Products in Civil Engineering. International Journal of Engineering Research & Technology, 9(6), 511-515.
  • Sedlačková, K., Sitek, J., & Novák, P. (2021). Analysis of Mount Etna’s volcanic rocks. Journal of Electrical Engineering, 72, 106–112. DOI: 10.2478/jee-2021-0014.
  • Stevens, J., Khasanov, A., Miller, J., Pollak, H., & Li, Z. (2005). Mössbauer Mineral Handbook. Mössbauer Effect Data Center, Asheville, USA.
  • Stucki, J.W., Goodman, B.A., & Schwertmann, U. (1988). Iron in Soils and Clay Minerals. D. Reidel, Dordrecht, 893 p.
  • Thompson, A., Rancourt, D.G., Chadwick, O.A., & Chorover, J. (2011). Iron solid-phase differentiation along a redox gradient in basaltic soils. Geochimica et Cosmochimica Acta, 75, 119–133. DOI: 10.1016/j.gca.2010.10.005.
  • Urbanski, M., Lapko, A., & Garbacz, A. (2013). Investigation on Concrete Beams Reinforced with Basalt Rebars as an Effective Alternative of Conventional R/C Structures. Procedia Engineering, 57, 1183-1191. DOI: 10.1016/j.proeng.2013.04.149.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-457c1192-3f4a-448e-a371-535abebd055c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.