Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The high temperature decomposition of basalt from Lower Silesia (Poland) was followed by Mössbauer spectroscopy investigation. The Fe content of the sample was ~9.0 at.%. The X-ray diffraction analysis shows that augite (37%) and olivine (12%) are major Fe-bearing mineral components. The sample also contains significant amount of anorthite (22%) and nepheline (17%). The sample was heated at various temperatures between 200o C and 1100o C for three hours. Up to a temperature of 500o C changes in contribution of Fe-bearing minerals are insignificant. Heating in the temperature range from 500o C to 1100o C leads to a systematic increase in contribution of iron oxides at the cost of contribution of silicate minerals, like augite and olivine. Mössbauer spectrum obtained after heating at 1100o C showed hematite as the main iron oxide phase. The ratio of Fe3+/Fetot in the non-heated sample was equal to 0.51 and after heating at 1100o C this ratio amounted to 0.89.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
10--19
Opis fizyczny
Bibliogr. 32 poz., tab., wykr.
Twórcy
autor
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
autor
- Institute of Physics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
autor
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
Bibliografia
- Al-Baijat, H., & Benedetti, A. (2013). Comparison between Composite Column Using Limestone and Basalt Concrete. Open Journal of Civil Engineering, 3, 1-6. DOI:10.4236/ojce.2013.31001.
- Barcova, K., Mashlan, M., & Martinec, M. (2003). Mössbauer study of transformation mechanism of Fe cations in olivine after thermal treatments in air. Journal of Radioanalytical and Nuclear Chemistry, 255(3), 529– 533. DOI: 10.1023/A:1022588500878.
- Burkhard, D.J.M. (2001). Crystallization and Oxidation of Kilauea Basalt Glass: Processes during Reheating Experiments. Journal of Petrology, 42(3), 507–527. DOI:10.1093/petrology/42.3.507.
- Brown, D.A., Sawicki, J.A., & Sherriff, B.L. (1998). Alteration of microbially precipitated iron oxides and hydroxides. American Mineralogist, 83, 1419–1425.
- Chen, M., Liu, J., & Wu, Z. (2022). Effect of Fe2O3 Concentration on the Properties of Basalt Glasses. Journal of Natural Fibers, 19(2), 575-585. DOI:10.1080/15440478.2020.1758277.
- Dyar, M.D., Klima, R., Fleagle, A., & Peel, S. (2013). Fundamental Mössbauer parameters of synthetic Ca-Mg-Fe pyroxenes. American Mineralogist, 98, 1172–1186. DOI:10.2138/am.2013.4333.
- Felippi de Lima, L., Zorzi, J., & Cruz, R. (2022), Basaltic glass-ceramic: A short review. Boletín de la Sociedad Española de Cerámica y Vidrio, 61, 2-12. DOI: 10.1016/j.bsecv.2020.07.005.
- Gialanella, S., Girardi, F., Ischia, G., Lonardelli, I., Mattarelli, M., & Montagna M. (2010). On the goethite to hematite phase transformation. Journal of Thermal Analysis and Calorimetry, 102, 867–873. DOI: 10.1007/s10973-010-0756-2.
- Gunnlaugsson, H.P., Rasmussen, H., Kristjánsson, L., Steinthorsson, S., Helgason, Ö., Nørnberg, P., Madsen, M.B., & Mørup, S. (2008). Mössbauer spectroscopy of magnetic minerals in basalt on Earth and Mars. Hyperfine Interactions, 182, 87–101. DOI:10.1007/s10751-008-9714-9.
- Hassan, K.M. (2015). The Iron Mineralogy of Eocene Fossil Wood - a Mössbauer Study of Samples from the Petrified Forest, New Cairo, Egypt. The Canadian Mineralogist, 53(4), 705–716. DOI: 10.3749/canmin.1400108.
- Hassan, K.M., & Dekan, J. (2013). Mössbauer study of Fe phases in terrestrial olivine basalts from southern Egypt. Mineralogia, 44(1-2), 3-12. DOI: 10.2478/mipo-2013-0001.
- Kądziołka-Gaweł, M., Adamczyk, Z., & Kalinowski, L. (2019). Mössbauer study of changes in olivine after heating in air. The Canadian Mineralogist, 57, 105-115. DOI:10.3749/canmin.1700074.
- Kądziołka-Gaweł, M., Dulski, M., Kalinowski, L., & Wojtyniak, M. (2018). The effect of gamma irradiation on the structural properties of olivine. Journal of Radioanalytical and Nuclear Chemistry, 317, 261–268. DOI:10.1007/s10967-018-5849-6.
- Khisina, N., Khramov, D., Kolosov, M., Klesehev, A., & Taylor, L.A. (2005). Formation of Ferriolivine and Magnesioferrite from Mg – Fe-Olivine: Reactions and Kinetics of Oxidation. Physics and Chemistry of Minerals, 22(4), 241-250. DOI: 10.1007/BF00202257.
- Komadel, P., Anastácio, A., Andrejkovičová, S., & Stucki, J. (2008). Iron phases identified in bentonite from the Lieskovec deposit (Slovakia) by variable temperature: Mössbauer spectroscopy. Clay Minerals, 43(1), 107–115. DOI: 10.1180/claymin.2008.043.1.08.
- Lakshman, A., Subba Raob, P., & Raob, K. (2004). Mössbauer spectroscopic analyses of Mg0.9Mn0.1InxFe2-xO4 spinel ferrites. Journal of Magnetism and Magnetic Materials, 284, 352–357. DOI: 10.1016/j.jmmm.2004.06.058.
- Liu, Q., Shaw, M., Parnas, R., & McDonnell, A. (2006). Investigation of Basalt Fiber Composite Mechanical Properties for Applications in Transportation. Polimer Composites, 27, 41-48. DOI: 10.1002/pc.20162.
- Malczewski, D., Jeleń, M., Żaba, J., Błachowski, A., Ruebenbauer, K., & Dziurowicz, M. (2017). Identification of iron-bearing minerals in basalts and pillow lavas of the Kaczawa mountains using 57Fe Mössbauer spectroscopy. Nukleonika, 62(2), 145-148. DOI: 10.1515/nuka2017-0021.
- Monaldo, E., Nerilli, F., & Gairo, G. (2019). Basalt-based fiber-reinforced materials and structural applications in civil Engineering. Composite Structures, 214, 246–263. DOI: 10.1016/j.compstruct.2019.02.002.
- Morimoto, N. (1988). Nomenclature of Pyroxenes. Mineralogy and Petrology, 39, 55-76.
- Morozov, M., Brinkmann, Ch., Lottermoser, W., Tippelt, G., Amthauer, G., & Kroll, H. (2005). Octahedral cation partitioning in Mg,Fe2+-olivine. Mössbauer spectroscopic study of synthetic (Mg0.5Fe2+0.5)2SiO4 (Fa50). European Journal of Mineralogy, 17, 495-500. DOI:10.1127/0935-1221/2005/0017-0495.
- Murad, E., & Cashion, J. (2004). Mössbauer spectroscopy of environmental materials and their industrial utilization. Kluwer Academic Publishers, Norwell, Massachusetts. 417 p.
- Osacký, M., Honty, M., Madejová, J., Bakas, T., & Šucha, V. (2009). Experimental interactions of Slovak bentonites with metallic iron. Geologica Carpathica, 60(6), 535-543. DOI: 10.2478/v10096-009-0039-7.
- Özdemir, Ö., & Dunlop, D. (2000). Intermediate magnetite formation during dehydration of goethite. Earth and Planetary Science Letters, 177, 59-67. DOI: 10.1016/S0012-821X(00)00032-7.
- Rivas-Sanchez, M.L., Alva-Valdivia, L.M., Arenasalatorre, J., Urrutia-Fucugauchi, J., Perrin, M., Goguitchaichvili, A., Ruiz-Sandoval, M., & Ramos Molina, M.A. (2009). Natural magnetite nanoparticles from an iron-ore deposit: size dependence on magnetic properties. Earth, Planets and Space, 61, 151–160. DOI: 10.1186/BF03352895.
- Scorzelli, R., Souza Azevedo, I., Stewart, S., Varela, M., & Kurat, G. (2005). Druse Pyroxenes in D’Orbigny: A Mössbauer Spectroscopy Study [Abstract]. AIP Conference Proceedings, 795, 214. DOI: 10.1063/1.2128361.
- Sunny, J.E., Varghese, R.A., Sagar, S., John, S., & Kassim, R. (2020). Application of Basalt and its Products in Civil Engineering. International Journal of Engineering Research & Technology, 9(6), 511-515.
- Sedlačková, K., Sitek, J., & Novák, P. (2021). Analysis of Mount Etna’s volcanic rocks. Journal of Electrical Engineering, 72, 106–112. DOI: 10.2478/jee-2021-0014.
- Stevens, J., Khasanov, A., Miller, J., Pollak, H., & Li, Z. (2005). Mössbauer Mineral Handbook. Mössbauer Effect Data Center, Asheville, USA.
- Stucki, J.W., Goodman, B.A., & Schwertmann, U. (1988). Iron in Soils and Clay Minerals. D. Reidel, Dordrecht, 893 p.
- Thompson, A., Rancourt, D.G., Chadwick, O.A., & Chorover, J. (2011). Iron solid-phase differentiation along a redox gradient in basaltic soils. Geochimica et Cosmochimica Acta, 75, 119–133. DOI: 10.1016/j.gca.2010.10.005.
- Urbanski, M., Lapko, A., & Garbacz, A. (2013). Investigation on Concrete Beams Reinforced with Basalt Rebars as an Effective Alternative of Conventional R/C Structures. Procedia Engineering, 57, 1183-1191. DOI: 10.1016/j.proeng.2013.04.149.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-457c1192-3f4a-448e-a371-535abebd055c