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1. Introduction

Singularities appear in many contexts in robotics and usually 
cause some problems in motion planning and/or controlling 
a robot. In this paper singularities are analyzed for different 
types of robots: mobile/free floating (nonholonomic ones) as 
well as for holonomic stationary manipulators. In the most 
common case, singularities arise when some matrices used to 
plan or control a robot motion lose their full admissible rank 
and problems of their (generalized) inversion arise. Two aspects 
are to be mentioned: from a geometrical point of view at sin-
gularities motions in certain directions are not permitted, from 
a numeric perspective either algorithms stop to work or their 
results are unreliable. Singularities occupy a relatively small 
part of a space where they are defined. However, their close 
neighborhood is quite massive and singularity disregarding 
may cause a numerical instability. Moreover, around singula-
rities some characteristics (like velocities at joints) can take 
inadmissible, too large values and/or they switch their signs 
causing undesirable chattering.

On the other hand singularities result either due to impro-
per modeling of a robot or its description is not valid globally. 
In order to search for a unifying definition of singularities one 
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needs to consult their linguistic meaning. From a point of view of 
applied sciences probably the most suitable notion of singularity 
is covered by its equivalent terms: strange, un-regular, and excep-
tional. It means that at singularities something unusual happens 
and this case cannot be treated in a standard (regular) way. From 
a practical point of view at singularities either a description of 
the controlled object should be updated or changed or algorithms 
designed for a regular case modified slightly or substantially. In 
any case special actions for the singular situation should be fore-
seen before starting planning or control and while performing 
regular actions a permanent monitoring should take place to react 
properly on singular cases. The singularity analysis still attracts 
attention not only roboticians but also mathematicians [3].

This paper, being extended version of the conference paper [7], 
is organized as follows. In Section 2 singularities are described 
in three areas of robotics: for manipulators representing holono-
mic systems exemplified on the task of inverse kinematics, for 
nonholonomic systems performing a motion planning task and 
quite general systems to be controlled optimally. In Section 3 
some methods to detect singularities are highlighted while in 
Section 4 techniques to cope with them are presented. Section 5 
concludes the paper.

2. Types of singularities

2.1. Holonomic systems
A standard kinematics for serial, single chain open loop mani-
pulators is given as

    k : ( ) ,∋ → ∈q k q    dim  = n,  dim  = m.  (1)

For a goal point in the task-space f ∈x   an analytic inverse 
of (1) can be found only for a few manipulators. Therefore  
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the Newton algorithm is used, below given in the form valid for 
redundant, n > m case (for non-redundant manipulators J#  
is substituted with the standard matrix inversion J−1) [16]

 
( ) ( )( )#

1 .i i i i f iξ+ = + ⋅ −q q J q x k q  (2)

The initial configuration q0 for the iterative process (2) is 
given and the pseudo-inverse J# of the matrix J is defined via 
the manipulability matrix

 M(q) = J(q)JT(q)    as    J# = JT(q)M(q)−1.  (3)

Sometimes either to increase/decrease importance of some 
coordinates or to unify units (length-angle coordinates for pris-
matic-rotational joints) the weighted-version of pseudo-inverse 
is used

 ( ) 11 T 1 T ,
−− −=J W J JW J   (4)

where W denotes a symmetric, positively definite weighting 
matrix. In any case, to effectively compute inverse (non-redun-
dant manipulators) or (weighted-) pseudoinverse (redundant 
manipulators) matrix, a square matrix has to be non-singular.

The kinematics is exemplified on the 2D planar pendulum, 
depicted in Fig. 1, with positional kinematics

Fig. 1. The planar double pendulum: configuration (q1, q2), task-space 
coordinates (x, y), end-effector forces τ and forces at joints (f1, f2) 
depicted
Rys. 1. Podwójne wahadło planarne: konfiguracja (q1, q2), współrzędne 
przestrzeni zadaniowej (x, y), siły na efektorze τ i w przegubach (f1, f2)

Fig. 2. Singular configurations of 2D planar pendulum: dots – length 
singularities, thick lines – angle singularities
Rys. 2. Konfiguracje osobliwe dwuwahadła planarnego w przestrzeni 
konfiguracyjnej: kropki – osobliwości długościowe, linia pogrubiona – 
osobliwości kątowe

characteristics can be expressed as angle dependencies, as some 
row-vectors of the Jacobi matrix are placed on a single hyper-
plane and some angle relationships between them hold. It can 
be noticed that the length singular configurations are not typi-
cal (for the 2D planar pendulum they appear only at configura-
tions   cf. Fig. 2 forming a set composed 
of isolated points. Theoretically, length singularities of corank 
s arise when simultaneously s ⋅ n equality conditions hold, i.e. 
s rows of the Jacobi matrix vanish. In practice s can be equal 
to 1 only as at most n independent constraints can be imposed 
on the configuration space and the constraints are satisfied on 
a 0-dimensional manifold (separated points). Consequently, the 
singularities can not be typical at all.

Singular configurations can be classified based on characteri-
stics they depend on. For earth-based stationary manipulators 
kinematic singularities can be distinguished (depending, beside 
configurations, on lengths and twists of links) while for free-flo-
ating space manipulators dynamic singularities appear as they 
depend also on masses and inertia parameters of robots. The 
aforementioned differentiation may be slightly deceptive as kine-
matic singularities can be assigned as well to problems related 
to kinematics while dynamic ones to those involved dynamics 
of robots.

The latter division can be even more complicated as for many 
systems of robotics their kinematics is directly incorporated into 
dynamics either in a motion planning within the task-space or 
at a control level in a cascade kinematic-dynamic scheme. 

For any manipulator with a high dimensional, m = 6, task-
space parameterization singularities arise due to the minimal 
representation of a rotational group ( )3 .  A (3  3) rotational 
matrix

 ( )= 3 ,∈  R n o a   (8)

composed of columns n, o, a is a nine dimensional object with 
six independent constraints imposed

   n    =  o  =  a  = 1,   n  × o = a, (9)

where   denotes a cross product and  ⋅   is an Euclidean met-
rics. Consequently ( )( )dim 3 9 6 3− = and theoretically three 
variables are enough to describe any rotation matrix R. Unfor-
tunately, there is no global diffeomorphism between ( )3  and 

3 (or  ). The most common task of robotics, the inverse kine-
matics, can be effectively solved only at a velocity level, thus 
some kind of angular velocity should be considered. The angular 
velocity in the space frame is derived from the formula 
[ ] Tω = RR  [15] and for two exemplary x-y-x and z-y-x param-
eterizations of ( )3∈R   with angles ( )T, ,α β γ=p is described 
by the following matrices

 
( ) 1 1 2 12

1 1 2 12
,

x a c a c
y a s a s

+   
= =   +   

k q  (5)

where a1, a2 are lengths of its links and a simplified form to 
denote trigonometric functions, c12 = cos(q1 + q2), s1 = sin(q1), 
is used. The Jacobian matrix of the 2D pendulum is given as

 
( ) 1 1 2 12 2 12

1 1 2 12 2 12
.

a s a s a s
a c a c a c
− − − ∂= =  +∂  

kJ q
q

 (6)

From the determinant condition 

det(J(q)) = a1 a2 s2 = 0

a singular configuration sub-space is derived 

   (7)

where, here and afterwards,  denotes any value.

Here we can distinguish length and angle singularities. The 
former ones are due to vanishing of some rows of the Jacobi 
matrix (at the configuration q = (0, 0)T (q = ( /2, 0)T) the 
length of the first (second) row in (6) is equal to zero. The 
latter ones arise when a row becomes a linear combination of 
other rows (the exemplary singular configuration ( /4, 0)T). This 
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  (10)

(where rot(axis, angle) denotes an elementary rotation [19]) 
resulting in angular velocities

  

  (11)

 

As A matrices should be inverted to work within a task space 
including coordinates p,

  
 
     

     
  
    (12)

 

then for a pair of angles β  parameterization singularities are 
encountered

                 
  (13)
 

which correspond to rotation matrices at the singularities

 
 

              
   (14)
 
 

 

respectively. From Eq. (14), it can be deduced that at singu-
lar configurations only a sum/difference of angles a, g can be 
determined uniquely. At regular configurations two sets of angles 

 correspond to a given rotation matrix. Moreover, the 
aforementioned derivations and observations are also valid for 
all other three element parameterization of ( )3  having sin-
gularities at different locations within the space.

To avoid parameterization singularities a redundant, four 
dimensional, parameterization of the ( )3  group with qua-
ternions is used frequently. Another method of avoiding problems 
with parameterization singularities is to switch parameteriza-
tions as matrices R at singularities for different parameteriza-
tions are firmly well separated, cf. Eq. (14), [4].

Singular configurations are usually detected by a drop of the 
maximal allowable rank of a Jacobi matrix J. The deficiency, 
a corank

 corank(J) = n − rank(J)  (15)

can serve as another factor for the classification of singulari-
ties. Typically, the corank(J(q)) = 1 and those singularities are 
unavoidable, contrary to avoidable singularities characterized 
by higher coranks. A corank one set forms in the n-dimensional 
configuration space a (n − 1) dimensional subspace and splits 
the configuration space into two pieces. If initial and final con-
figurations of a planned motion are located not in the same 
component, then a continuous curve connecting them has to 
cross the singularity region at least once and a singular configu-
ration is inevitably met. When a singularity is of corank two or 
more, then it can be avoided as the singularity set is too small 
to split the configuration space into separated components and 
a trajectory between any two configurations can be planned 
avoiding this set.

For a special class of manipulators with the last three motion 
axes crossing at a single point a kinematic decoupling techni-
que [19] can be applied to simplify solving an inverse kinematic 
task. Unfortunately, even for the manipulators singularities can 
also be encountered.

Till now singular configurations were considered as trouble-
makers. In some circumstances, however, they may be even 
desirable. Based on the virtual work principle

 , ,τ = x q f  (16)

one can calculate how forces/momenta t applied at the end-ef-
fector of a manipulator are transformed into reactions forces/
momenta at joints f (cf. Fig. 1)

 ( )T .=J q fτ   (17)

In Eq. (16) ·, ·  stands for the inner product and ,q  x  are 
velocities in the configuration/task space, respectively.

To illustrate the force/momenta transformation (17) let us, 
once again, analyze the double pendulum (5), (6) interpreted as 
a simplified model of a human standing in the up-right singular 
configuration, ( )T/2,0 .π=q  In this case the gravity force 

( )T
0, y mgτ= =τ  acts along y-axis, where m denotes a mass and 

g stands for the gravity acceleration g = 9.81 m/s2:

 

1 1 2

2 2

00 0
.

0 0y

f a a
f a τ

− −       
= =      −      

 (18)

At this particular, singular configuration no reaction forces 
act at joints what is the optimal pose for a human to stand for 
a long time. Quite different result is obtained when the optimal 
configuration of a simplified 2dof human hand while handwrit-
ing is searched for. This time the manipulability measure, intro-
duced by Yoshikawa [22]

 ( ) ( )( )man det=q M q  (19)

for the planar double pendulum (5) is to be optimized. After 
substituting (6), into (3) and (19) one obtains
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 ( ) ( )1 2 2man sin .a a q=q  (20)

Thus, the optimal configuration for handwriting is q2 = ± p/2 
being as far as possible from singularities, cf. Eq. (7).

The aforementioned examples display a general position-force 
duality. Consequently, a simultaneous optimization of forces and 
positions is not possible and only compromised (weighted) solu-
tion is possible when both factors are important.

2.2. Nonholonomic systems
The second class of models considered result from nonholonomic 
constraints in the Pfaff form

 ( ) 0.=A q q  (21)

Those constraints are due to no lateral/longitudinal slippage 
of wheels of mobile robots [6] or a preservation of the angular 
momentum for free floating robots [5].

Let us start with the unicycle robot with a single no-side 
slippage constraint

   (22)

where the configuration ( )T, ,x y θ=q  is composed of position 
and orientation of the robot.

For a control purpose it is desirable to have rather a driftless 
control system

 
( ) ( )

1

m

i i
i

u
=

= = ∑q G q u g q  (23)

than equation on constraints (21). Thus a matrix ( )G q  should 
be selected that spans a space perpendicular to rows of the 
matrix ( )A q

 ( ) ( ) .=A q G q 0  (24)

As dimq = 3 and there is a single constraint, r = 1 so two 
vector fields should be found m = n − r = 2 perpendicular to 
A(q) and independent of each other. The first is quite simple

 ( ) ( )T
1 0,0,1=g q  (25)

but the second could be

 ( ) ( ) ( )( )T
2 1/sin ,1/cos ,0θ θ=g q  (26)

apparently introducing a singularity at the subspace of the con-
figuration space ( , , kp/2)T. This type of singularity we name 
a modeling singularity as due to wrong model formulation (23), 
(25), (26), singularities were introduced. When modeling process 
is performed accurately, there is no modeling singularities and 
the truly good vector should be selected as follows

 ( ) ( ) ( )( )T
2 cos ,sin ,0 .θ θ=g q  (27)

Now another family of models of the form (23) is considered

 

 (28)

It can be checked, by direct calculations, that possible nonzero 
vector fields derived from generators g1(q), g2(q) with the use of 
a Lie bracket operation [·, ·] are of the form

 
  (29)

In fact

 

( )
( )

T

1 2 1

T
1 2

j!, = 0,0, , for
j - k ! ,

, = 0,0,0 , for

k j k

k

ad q k j

ad k j

−
  
  ≤    
  > 

g g

g g

 (30)

and in (30), by definition

 
0
1 1, and 0! 1.q ≡ =  (31)

From (30) it can be concluded that the system (28) is non-
holonomic (and a small time locally controllable) as it satisfies 
the Chow theorem (its Lie algebra is of the full rank, LARC) [2]

 1 2 1 2det , = ! 0.jad j  ∀ ≠  q g g g g   (32)

It is also nilpotent, cf. Eq. (32) and singular at configurations 
(0, )T because outside the set extra one bracket

 
 (33)

is enough to satisfy LARC. What is even more important when 
planning a motion between configurations (q1(0), q2(0), q3(0))T 
and (q1(0), q2(0), q3(T))T (two first coordinates are assumed to 
be equal as it is quite easy to get their desirable values by swit-
ching on a single control either u1 or u2) outside the singularity 
region controls in the form:

 ( ) ( ) ( ) ( )1 1 2 2sin , cos ,u t a t u t a tω ω= =  (34)

are able to steer the system into the goal configuration.  
In Eq. (34) the base frequency 2 / ,Tω π=  T is a time horizon, 
and a1, a2 are variables depending on q3(T) − q3(0). In a singu-
larity region the controls (34) are useless as they do not change 
the final value of coordinate q3 despite manipulating with ampli-
tudes and phases of controls. It appears that only controls with 
appropriately increased frequency of the second control

 ( ) ( ) ( ) ( )1 1 2 2sin , cos ,u t a t u t a j tω ω= =  (35)

can solve the planning problem. This example shows that at 
singular configurations a switching between control scenarios 
should be performed. Obviously one can take a mix of sinus/
cosine functions but a redundant representation of controls is not 
desirable as it increases a computational complexity. One more 
message from this example is that one should know a structure 
of a controlled system to properly design a parameterized family 
of admissible controls. In this simple case one could calculate 
and prove which controls are good and which are useless. In 
a general case, with no useful information on the structure one 
can frequently take harmonic controls up to a given boundary 
frequency, but unfortunately it introduces a huge redundancy 
and problems with effective and fast motion planning.

In the previous example at singular configurations, cf. (32), 
(33), more than the minimum number of vector fields has to be 
used to preserve the LARC condition. In the next example at 
singular configurations the model cannot be used in planning 
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at all. The kinematic car [11], belongs to the family of models 
given by (23) with m = 2 and vector fields

 ( ) ( ) ( )T T
1 2cos ,sin , tan / ,0 , 0,0,0,1 .Lθ θ φ= =g q g  (36)

The configuration vector ( )T, , ,x y θ φ=q  is composed of posi-
tion and orientation of the mid-point of the rear axis, φ  is the 
angle of the steering front wheel and L is a constant parameter, 
the distance between front and rear axes. The vector field g1(q) 
and its descendants like

 
 (37)

are badly conditioned at singular configurations characterized 
by /2.φ π= ±  To avoid the singularities and to cover all cases 
of a practical value, the configuration space is restricted. The 
range of admissible angles ( )max max, ,φ φ φ∈ −  with max0 /2φ π< <  
impacts also the minimum turning radius of the vehicle 

min max/ tan ,Lρ φ=  [11].

A motion planning for systems (23) with an additional drift 
can be solved using the Endogenous Configuration Space 
Method [21]. The method is a variant of the Newton algorithm 
of inverse kinematics with kinematics specifically defined to 
nonholonomic systems.

The system (23) is linearized along trajectory corresponding 
to given controls u(·)

 ( ) ( )t t= +A B vξ ξ  (38)
with

 
( ) ( )( ) ( ) ( ) ( )( )= , =

t t
t t t

∂
∂

G q u
A B G q

q
 (39)

and v() is a small variation of controls. Afterwards a Jacobi 
matrix is formulated based on the formula

 
( )( ) ( ) ( ) ( ) ( )

0 , 0
,

T

T T t t t dt⋅ ⋅ = ∫qJ u v B vΦ  (40)

where the fundamental matrix ( ),T tΦ  satisfies

 

( ) ( ) ( ) ( ), , , , .n
t s t t s s s
t

∂ = =
∂

A IΦ Φ Φ  (41)

In practice the matrices ( ),T sΦ  for s  [0, T] can not be cal-
culated analytically. Usually, the interval [s, T] is divided into 
K (mostly) equi-length sub-intervals

T − s = s  K

and the value of ( ),T sΦ  is approximated as follows

 
( ) ( )( )( ), + 1/2 .

i K
T s s i s s

=

= + − ∆ ∆∏
1

I AΦ  (42)

where I is the identity matrix. In order to avoid too excessive 
computations, a recursive formula is used based on the identity:

 ( ) ( ) ( )1 1, , , ,T s T s s s=Φ Φ Φ  (43)

where T > s1 > s. The Newton algorithm of motion planning 
allows to modify controls to approach end-point of a current 
trajectory to the desired goal configuration if only the Gramm 
matrix

 
 (44)

is non-singular. In this way another classification of singularities 
can be proposed. It appears that despite the trivial control 

( )⋅ ≡u 0  singular configuration cannot be determined analyti-
cally as both fundamental matrix ( ),T tΦ  at time t, (42), and 
consequently the Gramm matrix GR can be calculated only 
numerically and one cannot be sure that the singularities do not 
depend on time intervals assumed while integration. For manip-
ulators, like in the case of 2D planar pendulum, singular config-
urations are characterized in a pure analytic form and frequently 
configurations can be described with close form formulas.

It should be mentioned that the motion planning based on 
the endogenous configuration space method was presented in 
the non-parametric version. In many practical applications its 
parametric version is used [17] when controls ( )⋅u  are selected 
in a parametric form

 
( ) ( )

1
, 1, , ,

iN

i j ij
j

u t t i nφ λ
=

= =∑   (45)

and ( )j tφ  are taken from a functional basis (for example Fourier 
one) on the interval [0, T] and λ  collects all parameters of con-
trols. As in the non-parametric method also in this case singu-
larities may arise and one more problem appear how to properly 
select the representation of controls (45).

2.3. The optimal control
A standard method in the optimal control, also used in robotic 
applications, is to apply the Pontriagin’s Maximum Principle 
(PMP) [13]; [10]. For a given system of differential equations

 ( ),=q F q u  (46)

and an integral quality function

 
 (47)

co-state variables p are introduced. Then the Hamiltonian func-
tion H(q, p, u) is formulated and Hamiltonian equations after-
wards. Finally, based on the PMP equation

 
( ) ( )max , , , ,∗ ∗ ∗ ∗ ∗

∈
=

u
H q p u H q p u


 (48)

the first order necessary condition is formulated. In a typical 
case the condition depends explicitly on u and a control law 

( ),∗ ∗ ∗u q p  is formulated as a function of the extreme pair 
( ), .∗ ∗q p  After substituting the controls into the Hamiltonian 
equations, a two-point boundary value problem is to be solved 
[9]. It should be pointed out that the control law may not be 
determined at some (isolated) points on the time axis, not influ-
encing substantially the resulting trajectory. Unfortunately, for 
some optimal control problems the first order necessary condi-
tion does not depend on u at all and some extra effort should 
be taken to retrieve solvability of the problem [1]. Usually, higher 
order optimality conditions are considered (when the first among 
consecutive derivatives w.r.t. u of the Hamiltonian function 
depends on u explicitly) or Hamiltonian function is disturbed 
slightly to retrieve applicability of the first order necessary opti-
mality condition. In any case, special measures should be taken 
to restore the dependence of ∗u  on ( ), .∗ ∗q p

Singular optimal controls are more commonly encountered 
in economics or biology rather than in technical sciences. Such 
controls are illustrated on the example taken from [12], where 
sales optimization
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( )

0
1

T
u x dt−∫  (49)

is performed for the model and the initial condition given below

 ( ) 0, 0 .x x u x x= ⋅ =  (50)

In (49), (50), u(t) denotes a fraction of stock to be reinvested 
while x(t) stock reinvested/sold. Naturally, the control is con-
strained ( ) 0,1 .u t ∈     For the fixed time T > 1, the optimal 
control takes the form

 
 (51)

and are singular on the interval [T − 1, T]. In robotics bang-
-bang rather singular controls are encountered for the minimum-
-time motion planning [18], or the Hamilton function depends 
on a square of controls (so it is not linear) when the energy of 
motion is involved in the quality function.

3. Detection of Singularities

For holonomic manipulators singular configurations can be 
detected in two ways. A drop of the Jacobi matrix rank can 
 
be checked either by equating to zero 

n
m

 
  

 determinants of

all (m   m) square sub-matrices of the Jacobi matrix or with 
checking only one determinant of the manipulability matrix 
(3). The first method seems to be more complicated, but for 
n = m + 1 it is probably simpler that the second one, as in 
the case of the planar 3D-pendulum. Both methods give ana-
lytic formulas for singularities but they do not provide, easy 
to determine, information on a corank of the singularity. For 
this purpose one can use the Singular Decomposition Value, 
SVD, algorithm propagated in robotics by Maciejewski and 
Klein [14] which factorizes the Jacobi matrix into
 
 J = UDV T  (52)

where ( ),m∈U   ( )n∈V   are matrices that belong to 
special orthogonal groups of appropriate sizes, and D is a dia-
gonal matrix with singular values on its main diagonal. The 
number of singular values with (almost) zero values is equal to 
the corank (15) of the Jacobi matrix at a singular configuration. 
Unfortunately, SVD is a purely numeric algorithm and the ana-
lytic form of the decomposition is not available.

For nonholonomic systems, the LARC is checked by genera-
ting, with the Lie brackets, more and more complex vector fields, 
starting with generators gi(q) of the system (23). Then, the 
vector fields are added row-by-row into a matrix and the rank 
of the matrix is checked after each addition. Here also the chec-
king can be simplified as instead of using all vector fields, one 
can take only those that belong to the Ph. Hall basis without 
loosing any rank information.

In many algorithms of robotics a permanent evaluation of 
a distance to singularities is to be performed to find a right 
moment to (re-)act properly. The distance depends not only 
on a current configuration but also on some geometrical para-
meters. Therefore constants used to detect a neighborhood of 
singularities should be somehow correlated with the parameters.

One more important issue related to a computational com-
plexity and detection of singularities should be addressed. The 
detection of a neighborhood of singularities can be time-con-
suming, especially when performed frequently. On the other 
hand when a test for singularity is negative, all computations 

performed are useless for a regular case algorithm. Therefore 
a reasonable compromise between a computational effort and 
usefulness of results should rely on using information gathered at 
detecting singularities also in a regular control mode. An exam-
ple for the practical and effective approach is provided when the 
SVD algorithm helps to compute the generalized inverse matrix 
of J based on the formula

 
1 T,−=#J VD U   (53)

where D−1 = diag(1/dii). Previously, the diagonal matrix D was 
used to detect singularities too.

4. Coping with Singularities

For holonomic systems (manipulators) the simplest method of 
coping with singular configurations is to make robust the badly-
-conditioned manipulability matrix M, (3). It is done by adding 
to the matrix a small disturbing matrix  and running the 
Newton algorithm (2). When configurations generated with the 
algorithm leave a neighborhood of a singularity region, the per-
turbation term is switched off. In practice it is advised to weight 
components of the identity diagonal matrix Im with some coef-
ficients corresponding to the importance (range and units) of 
coordinates of forward kinematics and make them comparable.

Another class of methods relies on the principle of extrapola-
tion of trajectory behavior gathered before entering a singular-
ity region into its future evolution. As an example, a tunneling 
method of passing through singularities proposed by Dulęba 
and Sąsiadek [8] can be recalled. This method extrapolates 
linearly singular values of the Jacobi matrix collected in 
matrix D, cf. (52).

The more sophisticated method to deal with singularities 
has been developed by Tchoń and coworkers [20] being based 
on a normal form approach. At first it detects a type of sin-
gularity which is approached. Then, with appropriately con-
structed diffeomorphisms, it transforms a task from the task 
space into a joint space. In the latter space a trajectory is 
planned around singularities. The normal form method is com-
putationally involved.

When a robot is redundant it can be tried to avoid approach-
ing to singularities by optimization within the null space of the 
Jacobi matrix. In this case the right-hand side of Eq. (2) is sup-
plemented with the following term

 
( ) ( )( )# ,m

fρ ∂−
∂

I J q J q
q

  (54)

where a differentiable function f(q) should penalize approaching 
singularity. A good candidate for the function is a manipula-
bility measure (19) (without the square root that complicates 
the differentiation).

As it was mentioned previously, in some situations switching 
between a regular-case model and another well-conditioned 
model in vicinity of singularities is indispensable.

5. Conclusions

In this paper various exemplifications of singularities in robo-
tics were highlighted. The singularities pose some problems 
in motion planning and control of robots where some algori-
thms are badly-conditioned while other stop to work at all. In 
practice a singular cases should be considered separately from 
regular ones. It should be also pointed out that a problem of 
singularities is not focused on some sub-spaces of a general 

24

Many Faces of Singularities in Robotics 

P O M I A R Y • A U T O M A T Y K A • R O B O T Y K A  NR 1 /2023



space considered. It is also extended to points close to singula-
rities when some numerical problems are encountered as well. 
Some methods of the detection and coping with singularities 
were also discussed.

References

1. Bryson Jr, A.E., Ho Y.C. (eds.) Applied Optimal Control 
Optimization, Estimation, and Control, chapter Singular 
Solutions of Optimization and Control Problems. Hemisphere 
Publ. Co., Boca Raton, 1975.

2. Chow W.L., Über Systeme von linearen partiellen Differen-
tialgleichungen erster Ordnung. “Mathematische Annalen”, 
Vol. 117, 1940/1941, 98–105.

3. Donelan P.S., Singularities of robot manipulators [In:] Sin-
gularity Theory, 2007, 189–217. World Scientific. 
DOI: 10.1142/9789812707499 0006.

4. Dulęba I., On avoiding representation singularities. [In:] 
IX Symposium on Simulation of Dynamic Processes, 1996,  
345–350, Chocholowska Valley, (in Polish).

5. Dulęba I., Algorithms of motion planning for nonholonomic 
robots. Wroclaw University of Technology Publishing House, 
Wroclaw 1998.

6. Dulęba I., Kinematic Models of Doubly Generalized N-trailer 
Systems. “Journal of Intelligent & Robotic Systems”, Vol. 94, 
No. 1, 2019, 135–142, DOI: 10.1007/s10846-018-0817-5.

7. Dulęba I., Karcz-Duleba I., Many faces of singularities in 
robotics. [In:] 4th Conference on Aerospace RObotics. Zielona 
Góra, Poland, 2022.

8. Dulęba I., Sąsiadek J., Nonholonomic motion planning 
based on newton algorithm with Energy optimization. “IEEE 
Transactions on Control Systems Technology”, Vol. 11, 
No. 3, 2003, 355–363, DOI: 10.1109/TCST.2003.810394.

9. Holsapple R., Iyer R., Doman D., New, fast numerical 
method for solving two-point boundary-value problems. “Jour-
nal of Guidance, Control, and Dynamics”, Vol. 27, No. 2, 
2004, 301–304. DOI: 10.2514/1.1329.

10. Kirk D., Optimal control theory: an introduction. Pren-
tice-Hall, 1970.

11. LaValle S., Planning algorithms. Cambridge Univesity Press, 
2006.

12. Lenhart S., Optimal control theory in application to biology, 
lecture on bang-bang and singular controls. web.math.utk.
edu/˜lenhart/smb2003.v2.html, 2003.

13. Locatelli A., Optimal control theory: an introduction. 
Birkhauser, 2001.

14. Maciejewski A., Klein C.A., The singular value decomposi-
tion: Computation and applications to robotics. “The Inter-
national Journal of Robotics Research, Vol. 8, No. 6, 1989. 
63–79. DOI: 10.1177/027836498900800605.

15. Murray R.M., Li Z., Sastry S.S., A mathematical introduc-
tion to robotic manipulation. CRC press, 1994, 
DOI: 10.1201/9781315136370.

16. Nakamura Y., Advanced Robotics: Redundancy and Optimi-
zation. Addison-Wesley, 1991.

17. Ratajczak J., Tchoń K., On dynamically consistent Jacobian 
inverse for non-holonomic systems. “Archives of Control 
Sceinces”, Vol. 27, No. 4, 2017, 557–573, 
DOI: 10.1515/acsc-2017-0033.

18. Shin K., McKay N., Minimum-time control of robotic manip-
ulators with geoemetric path constraints. “IEEE Transactions 
on Automatic Control”, Vol. 30, No. 6, 1985, 531–541, 
DOI: 10.1109/TAC.1985.1104009.

19. Spong M.W., Hutchinson S., Vidyasagar M., Robot Modeling 
and Control. Wiley, 2 edition, 2020.

20. Tchoń K., Muszyński R., Singular inverse kinematic problem 
for robotic manipulators: A normal form approach. “IEEE 
Transactions on Robotics and Automation”, Vol. 14, No. 1, 
1998, 93–104, DOI: 10.1109/70.660848.

21. Tchoń K., Ratajczak J., Singularities, normal forms, and 
motion planning for non-holonomic robotic systems. [In:] 
G.N. M. Ahmadi (ed.), 6th Int. Conf. on Control, Dynamic 
Systems, and Robotics, Ottawa, 2019, 
DOI: 10.11159/cdsr19.127.

22. Yoshikawa T., Dynamic manipulability of robot manipula-
tors. „International Journal of Robotics Research”, Vol. 4, 
No. 2, 1985, 3–9 DOI: 10.1177/027836498500400201.

Streszczenie: W przeglądowym artykule przedstawiono wybrane zagadnienia dotyczące różnych 
koncepcji osobliwości spotykanych w robotyce. Analizowane są osobliwości w zadaniu odwrotnej 
kinematyki dla manipulatorów szeregowych, planowaniu ruchu układów nieholonomicznych oraz 
sterowaniu optymalnym. Rozważane zadania obejmują duży obszar praktycznych systemów 
robotycznych. Podjęto próbę zdefiniowania pojęcia osobliwości niezależne od konkretnego zadania. 
Zaproponowano kilka klasyfikacji osobliwości w zależności do różnych kryteriów oraz zilustrowanych 
na prostych przykładach. Osobliwości przeanalizowano z numerycznego i fizycznego punktu widzenia. 
Ogólnie, osobliwości stwarzają pewne problemy w planowaniu ruchu i/lub sterowaniu robotami. Jednakże, 
jak pokazano na przykładzie transformacji sił/momentów w manipulatorach szeregowych, w niektórych 
przypadkach mogą one być również użyteczne. Przedstawiono także techniki wykrywania osobliwości 
oraz metody radzenia sobie z nimi. Praca w założeniu ma charakter dydaktyczny i ma pomóc badaczom 
z kręgu robotyki uzyskać ogólny pogląd na zagadnienie osobliwości.

Słowa kluczowe: układy holonomiczne, układy nieholonomiczne, osobliwości, klasyfikacje, detekcja, unikanie

Różne oblicza osobliwości w robotyce
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