PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of fire resistance of ethylene-vinyl acetate polymer calcium sulfoaluminate cement mortars

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research focuses on enhancing the fire resistance of cement mortars by incorporating ethylene-vinyl acetate (EVA) polymer. It aims to assess how EVA improves the mortar’s performance when exposed to high temperatures and fire. The expected benefits include increased durability and enhanced safety under fire conditions through polymer modification. To investigate this, calcium sulfoaluminate cement mortars with varying EVA contents were subjected to direct fire exposure up to 700°C, following a detailed experimental plan to analyze their thermomechanical behavior after testing. The findings reveal that some samples experienced explosive reactions upon exposure to fire. Notably, the incorporation of EVA significantly enhanced both compressive and flexural strengths after direct fire exposure, with mortars containing 2 and 3% EVA achieving impressive compressive strengths of 11.55 and 13.82 MPa, respectively; the flexural strength peaked at approximately 4.5 MPa with 3% EVA. Thermal analyses indicated pronounced improvements in insulation properties for EVA concentrations between 1 and 3%, evidenced by reduced thermal conductivity and increased specific heat, highlighting the energy efficiency of these modified mortars, a vital consideration for sustainable construction. Additionally, mercury intrusion porosimetry testing showed that the optimal porosity of 29.92% was achieved with 1% EVA, while further increases to 2 and 3% led to diminishing returns. Thus, determining the optimal percentage of EVA is essential, as EVA modifications present a promising and sustainable alternative to conventional practices in cement mortars.
Wydawca
Rocznik
Strony
87--100
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
autor
  • Shandong Provincial Key Laboratory of Green and Intelligent Building Materials, University of Jinan, Shandong, China
  • Shandong Provincial Key Laboratory of Green and Intelligent Building Materials, University of Jinan, Shandong, China
  • Shandong Provincial Key Laboratory of Green and Intelligent Building Materials, University of Jinan, Shandong, China
autor
  • Shandong Provincial Key Laboratory of Green and Intelligent Building Materials, University of Jinan, Shandong, China
autor
  • Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, China
  • Laboratory of Analytical Electrochemistry and Materials Engineering, Department of Inorganic Chemistry, Faculty of Sciences, University of Yaoundé, Yaoundé, Cameroon
Bibliografia
  • [1] Semwogerere, D., Sangesland, S., Vatn, J., Pavlov, A., Colombo, D., Well integrity and late life extension – A current industry state of practice and literature review, Geoenergy Sci. Eng., 2025, 244, 213419. doi:10.1016/j.geoen.2024.213419
  • [2] Macorig, D., Ristori, C., Fiore, P., Bertoli, V., Road maintenance: which future?, Transp. Res. Procedia, 2023, 69: 687–694. doi:10.1016/j.trpro.2023.02.224
  • [3] Guo, C., Wang, R., Influence of calcium sulfoaluminate cement on early-age properties and microstructure of Portland cement with hydroxypropyl methyl cellulose and superplasticizer, J. Build. Eng., 2022, 45: 103470. doi:10.1016/j.jobe.2021.103470
  • [4] Zhou, H., Qi, X., Ma, C., Fang, Z., Lou, J., Chen, H., et al., Effect and mechanism of composite early- strength agents on sulfoaluminate cement-based UHPC, Case Stud. Constr. Mater., 2023, 18: e01768. doi:10.1016/j.cscm.2022.e01768
  • [5] Yuan, P., Zhang, B., Yang, Y., Jiang, T., Li, J., Qiu, J., et al., Application of polymer cement repair mortar in underground engineering: A review, Case Stud. Constr. Mater., 2023, 19: e02555. doi:10.1016/j.cscm.2023.e02555
  • [6] Ohama, Y., Polymer-based materials for repair and improved durability: Japanese experience, Constr. Build. Mater., 1996, 10(1): 77–82. doi:10.1016/0950-0618(95)00063-1
  • [7] Hou, X., Li, J., Xu, J., Xiao, X., Wang, J., Liu, Y., et al., Experimental study of sulfoaluminate cement-based rapid repair mortar undergoing hot/wet harsh conditions: Mechanical strengths, hydration products, and ettringite evolution mechanism, ACS Sustain. Chem. Eng., 2024, 12(2): 10089–10101. doi:10.1021/acssuschemeng.3c08366
  • [8] Pang, B., Yang, C., Wang, P., Mei, T.L., Song, X., Cement-based ductile rapid repair material modified with self-emulsifying waterborne epoxy, J. Build. Eng., 2023, 79: 107864. doi:10.1016/j.jobe.2023.107864
  • [9] Brien, J.V., Mahboub, K.C., Influence of polymer type on adhesion performance of a blended cement mortar, Int. J. Adhes. Adhes., 2013, 43: 7–13. doi:10.1016/j.ijadhadh.2013.01.007
  • [10] Ohama, Y., Ramachandran, V.S., Polymer-modified mortars and concretes, Concrete Admixtures Handbook, 1996, 558–656. doi:10.1016/B978-081551373-5.50013-1
  • [11] Yang, F., Kouadjo, T.J.J., Wang, S., Huang, S., Cheng, X., The effect of extensive heat exposure on the mechanical properties of polymer-modified sulfoaluminate cement repair mortar, Case Stud. Constr. Mater., 2024, 20: e03348. doi:10.1016/j.cscm.2024.e03348
  • [12] Kiani, B., Liang, R.Y., Gross, J., Material selection for repair of structural concrete using VIKOR method, Case Stud. Constr. Mater., 2018, 8: 489–497. doi:10.1016/j.cscm.2018.03.008
  • Kiani B. Liang R.Y. Gross J. Material selection for repair of structural concrete using VIKOR method Case Stud. Constr. Mater. 2018 8 489 497 10.1016/j.cscm.2018.03.008
  • [13] He, Y., Wen, F., Lian, P., Chen, R., Bai, Y., Ma, J, et al., Preparation and performance of acrylic mortar repair material modified suitably by nano-fiber and nanoparticle in low-temperature for high-strength gain applications in construction, J. Build. Eng., 2024, 84: 108366. doi:10.1016/j.jobe.2023.108366
  • [14] Chindaprasirt, P., Lao-un, J., Zaetang, Y., Wongkvanklom, A., Phoo-ngernkham, T., Wongsa, A., et al., Thermal insulating and fire resistance performances of geopolymer mortar containing auto glass waste as fine aggregate, J. Build. Eng., 2022, 60: 105178. doi:10.1016/j.jobe.2022.105178
  • [15] Jin, Z., Li, S., Li, Z., Li, S., Polymer-modified sulphoaluminate cement-based mortar anode and its optimal arrangement for electrochemical chloride extraction, Constr. Build. Mater., 2022, 348: 128665. doi:10.1016/j.conbuildmat.2022.128665
  • [16] Wang, R., The role of polymer in calcium sulfoaluminate cement-based materials. Circular Economy. Springer Proceedings in Materials, 2025. doi:10.1007/978-3-031-72955-3_16
  • [17] Wu, X., Sharma, R., Das, K.K., Ahn, J., Jang, J.G., Effect of CO2 curing on the resistance of calcium sulfoaluminate cement paste to elevated temperature. Constr. Build. Mater., 2024, 456: 139338. doi:10.1016/j.conbuildmat.2024.139338
  • [18] Aattache, A., Soltani, R., Durability-related properties of early-age and long-term resistant laboratory elaborated polymer-based repair mortars, Constr. Build. Mater., 2020, 235: 117494. doi:10.1016/j.conbuildmat.2019.117494
  • [19] Mensah, R.A., Wang, D., Shanmugam, V., Sas, G., Försth, M., Das, O., Fire behaviour of biochar-based cementitious composites, Compos. Part. C: Open. Access., 2024, 14: 100471. doi:10.1016/j.jcomc.2024.100471
  • [20] Gao, Z., Wang, L., Zhang, H., Underground space simulation of thermal expansion mismatch at high temperature, Undergr. Space, 2023, 8: 210–228. doi:10.1016/j.undsp.2022.03.007
  • [21] Ohama, Y., Kokubun, Y., Shirai, A., Fire-protecting performance of polymer-modified mortars for buildings and proposal for fire-protecting performance test methods for them, J. Struct. Constr. Eng. (Trans. AIJ), 2008, 73(631): 1449–1457. doi:10.3130/aijs.73.1449
  • [22] GB/T 20976 – 2007, Calcium Sulphoaluminate Cement, Published by China Building Materials Federation and Standardization Administration of China, Beijing, 2007
  • [23] GB/T 17671 – 1999, Test method of cement mortar strength (ISO method), China National Standardization Administration, China, 1999
  • [24] GB 50164-2011, Standard for Quality Control of Concrete, National Standard of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China, 2011
  • [25] GB/T 17671-2021, Test Method of Cement Mortar Strength (ISO Method), National Standard of China, State Administration for Market Regulation; Standardization Administration of the People’s Republic of China, China, 2021
  • [26] EN 480-5:2005, Standard for Admixtures for Concrete, Mortar, and Grout - Test Methods - Determination of Capillary Absorption, European Committee for Standardization (CEN), Brussels, Belgium, 2005
  • [27] UNE-EN 1363-1:2012, Standard for Fire Resistance Tests - Part 1: General Requirements, European Committee for Standardization (CEN), Brussels, Belgium, 2012
  • [28] UNE-EN 1363-2:2000, Standard for Fire Resistance Tests - Part 2: Alternative and Additional Procedures, European Committee for Standardization (CEN), Brussels, Belgium, 2000
  • [29] UNE-EN 1365-4:2000, Standard for Fire Resistance Tests for Loadbearing Elements - Part 4: Columns, European Committee for Standardization (CEN), Brussels, Belgium, 2000
  • [30] ISO R-834:1968, Standard for Fire Resistance Tests, International Organization for Standardization (ISO), Geneva, Switzerland, 1968
  • [31] ASTM C1060-18, Standard Practice for Thermographic Inspection of Insulation Installations in Envelope Cavities of Frame Buildings, ASTM International, West Conshohocken, 2018
  • [32] ASTM C109/C109M, Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50- mm] Cube Specimens), 2021, ASTM C109/C109M-21, ASTM International, West Conshohocken.
  • [33] GB/T 42277-2022, Test Method for Carbonation of Cement Mortar, National Standardization Management Committee, State Administration for Market Regulation, People’s Republic of China, 2022
  • [34] ASTM C1723-16, Standard Guide for Examination of Hardened Concrete Using Scanning Electron Microscopy, Standards Press of China, United States, 2016
  • [35] GB/T 3183-2017, Specification for Masonry Cement, National Technical Committee on Cements of Standardization Administration of China, General Administration of Quality Supervision, Inspection and Quarantine, People’s Republic of China, 2017
  • [36] ASTM B922, Metal Powder Specific Surface Area by Physical Adsorption, ASTM International, West Conshohocken, 2008
  • [37] Cai, R., Qi, H., Mao, J., Improved crack resistance and pore structure of cement-based materials by adding EVA powder, J. Mater. Civ. Eng., 2022, 34: 4. doi:10.1061/(ASCE)MT.1943-5533.0004143
  • [38] Sidiq, A., Setunge, S., Annamalai, P.K., Gravina, R.J., Giustozzi, F., Concrete self-healing performance using surface roughness parameters: Metrological approach, J. Build. Eng., 2024, 90: 109433. doi:10.1016/j.jobe.2024.109433
  • [39] Yang, S., He, S., Liu, S., Study on the evolutionary mechanism of shrinkage stress-strain behavior of EVA-modified cement mortar at an early age, J. Build. Eng., 2024, 91: 109492. doi:10.1016/j.jobe.2024.109492
  • [40] Balagopal, V., Raju, J.P., Kumar, A.A., Sajeev M., Veena P., Effect of ethylene vinyl acetate on cement mortar – A review, Mater. Today: Proc., 2023. doi:10.1016/j.matpr.2023.03.692
  • [41] Yeon, K.S., Kim, K.K., Yeon, J., Lee, H.J., Compressive and flexural strengths of EVA-modified mortars for 3D additive construction, Materials, 2019, 12(16): 2600. doi:10.3390/ma12162600
  • [42] Yeon, J., Short-term deformability of three-dimensional printable EVA-modified cementitious mortars, Appl. Sci., 2019, 9(19): 4184. doi:10.3390/app9194184
  • [43] Ghally, E., Khalil, H., Ragab, R.A.A., Bakr, M., Evaluation the chemical and mechanical properties of EVA modified concrete, Egypt. J. Chem., 2022, 65(4): 403–410. doi:10.21608/ejchem.2022.117998.5320
  • [44] Pattanayak, S., Bhowmick, T., Thermal characteristics of poly(ethylene vinyl acetate) from 80 to 300 K, Cryogenics, 1990, 30(9): 795–798. doi:10.1016/0011-2275(90)90277-J
  • [45] Yang, Y., Liu, J., Liu, L., Li, J., Liu, Q., Chen, Z., et al., Quantifying the water saturation degree of cement-based materials by hydrogen nuclear magnetic resonance (1H NMR), Constr. Build. Mater., 2024, 438: 137340. doi:10.1016/j.conbuildmat.2024.137340
  • [46] Wu, Z., Wong, H.S., Chen, C., Buenfeld, N.R., Anomalous water absorption in cement-based materials caused by drying shrinkage induced microcracks, Cem. Concr. Res., 2019, 115: 90–104. doi:10.1016/j.cemconres.2018.10.006
  • [47] Wang, Y., Li, L., An, M., Sun, Y., Yu, Z., Huang, H., Factors influencing the capillary water absorption characteristics of concrete and their relationship to pore structure, Appl. Sci., 2022, 12(4): 2211. doi:10.3390/app12042211
  • [48] Tutkun, B., Yazıcı, H., Effect of absorption determining methods of superabsorbent polymers in cementitious environments on the fresh properties, Mater. Today: Proc., 2023, 81: 43–49. doi:10.1016/j.matpr.2022.11.403
  • [49] Lanka, S.T., Moses, N.G.A., Suppiah, R.R., Maulianda, B.T., Physio-chemical interaction of Ethylene-Vinyl Acetate copolymer on bonding ability in the cementing material used for oil and gas well, Pet. Res., 2022, 7(3): 341–349. doi:10.1016/j.ptlrs.2021.10.003
  • [50] Shi, X., Cheng, J., Xu, L., Feng, T., Han, J., Zhang, P., et al., Study on the effect of WER and EVA on the performance and microstructure of cement mortars for a prefabricated residential floor, J. Build. Eng., 2022, 15: 104050. doi:10.1016/j.jobe.2022.104050
  • [51] Silva, D.A., John, V.M., Ribeiro, J.L.D., Roman, H.R., Pore size distribution of hydrated cement pastes modified with polymers, Cem. Concr. Res., 2001, 31(8): 1177–1184. doi:10.1016/S0008-8846(01)00549-X
  • [52] Hou, S.H., Sun, G.C., Lu, D., Zhao, X., Fan, L., EVA enhanced cementitious materials based coatings for the improvement of steel reinforcement corrosion protection performance, J. Build. Eng., 2023, 15: 107080. doi:10.1016/j.jobe.2023.107080
  • [53] Malik, M., Bhattacharyya, S.K, Barai, S.V., Temperature, porosity and strength relationship for fire affected concrete, Mater. Struct., 2022, 55(2): 72. doi:10.1617/s11527-022- 01898-9
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45750c1f-68c4-41db-9669-711b52b611a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.