PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Impact from Counterion Nature on Current Transfer Through Structural Fragments of Sulphocationic Resin

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The parameters of an extended three-wire model of ion-exchange materials conductivity, which characterize the current particles flowing through various structural fragments of the ion exchanger, were calculated based on the concentration dependence of the sulphocationite KU-2 resin electrical conductivity in electrolyte solutions of different nature. It was shown that most of the current in the resin is transferred through the channel with a consecutive arrangement of conducting gel and solution phases, regardless of the counterion nature. The differences in model parameters for the resin in the salt and proton form, related to the specific mechanism of proton transfer, confirmed the adequacy of the applied approach to the estimation of the counterion nature effect on the current transfer in resin.
Rocznik
Strony
7--12
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
  • Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, Bandera str., 12, Lviv, 79013, Ukraine
  • Faculty of Сhemistry and High Technologies, Kuban State University, Stavropolskaya str., 149, Krasnodar, 350040, Russia
autor
  • Faculty of Сhemistry and High Technologies, Kuban State University, Stavropolskaya str., 149, Krasnodar, 350040, Russia
  • Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, Bandera str., 12, Lviv, 79013, Ukraine
Bibliografia
  • 1. Adamenko Ya., Coman M. 2016. The Methodology of Decision-Making within Procedures of Environmental Impact Assessments. Wulfenia Journal, 23(6), 377–384.
  • 2. Baldanova D.M., Tanganov B.B. 2012. Plazmeno-gidrodinamicheskaya kontseptsiya sostoyaniya ionov v rastvorakh elektrolitov v otsenke nekotorykh svoystv. RAYe, Moscow.
  • 3. Berezina N.P., Kononenko N.A., Dyomina O.A., Gnusin N.P. 2008. Characterization of ion-exchange membrane materials: properties vs structure. Advances Colloid Interface Sci., 139, 3–28.
  • 4. Demina O.A., Falina I.V. Raschet model’nykh parametrov ionoobmennykh materialov v ramkakh rasshirennoy trekhprovodnoy modeli. A.s. 2014662877 RF, № 2014660629; zayavl. 20.10.14; opubl. 10.12.14.
  • 5. Demina O.A., Falina I.V., Kononenko N.A., Demin A.V. 2016a. Effect of Counter- and Co-Ions on the Structural Transport Parameters of Sulfoacid Cationite Membranes. Russian Journal of Physical Chemistry A, 90(8), 1633–1638.
  • 6. Demina O.A., Kononenko N.A., Falina I.V. 2014. New Approach to the Characterization of Ion Exchange Membranes Using a Set of Model Parameters. Petroleum Chemistry. 54(7) 515–525.
  • 7. Demina O.A., Shkirskaya S.A., Kononenko N.A., Nazyrova E.V. 2016b. Assessing the Selectivity of Composite Ion-Exchange Membranes within the Framework of the Three-Wire Model of Conduction. Russian Journal of Electrochemistry, 52(4) 291–298.
  • 8. Falina I.V., Demina O.A., Kononenko N.A., Annikova L.A. 2017. Influence of inert components on the formation of conducting channels in ion-exchange membranes. Journal of Solid State Electrochemistry, 21(3) 767–775.
  • 9. Filippov A.N., Kononenko N.A., Demina O.A. 2017. Diffusion of Electrolytes of Different Natures through the Cation-Exchange Membrane. Colloid Journal, 79(4) 556–566.
  • 10. Gnusin N.P., Demina O.A., Annikova L.A. 2009. Method of model parameter calculation of for ion-exchange resin. Russian J. Electrochemistry, 45(4), 490–495.
  • 11. Gomelya, M.D., Trus, I.M., Radovenchyk, I.V. 2014. Influence of stabilizing water treatment on weak acid cation exchange resin in acidic form on quality of mine water nanofiltration desalination. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 100–105.
  • 12. Karpenko-Jereb L.V., Berezina N.P. 2009. Determination of structural. selective electrokinetic and percolation characteristics of ion-exchange membranes from conductive data. Desalination, 245, 587–596.
  • 13. Nikonenko V.V., Pis’menskaya N.D., Istoshin A.G., Zabolotskii V.I., Shudrenko A.A. 2007. Generalization and prognostication of mass exchange characteristics of electrodialyzers operating in overlimiting and compartmentation method. Russian J. Electrochemistry, 43(9), 1069–1081.
  • 14. Volkov A.I., Chernik A.A. Spravochnik po elektrokhimii. Knizhnyy dom, Moscow. 2017.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45741436-7848-4c3d-ae6e-79d7edcc2d99
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.