PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studies on the Effect of Nitrate Esters on the Properties of Advanced Energetic Propellants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Propulsion designers all over the world are exploring the possibility of achieving higher performance by enhancing the energy of solid propellants. This can be achieved by replacing non-energetic ingredients with energetic ones or by replacing low density ingredients, particularly binders, with higher density ones, without affecting the processibility and ageing characteristics. The same has been attempted by using nitroglycerine (NG) and butanetriol trinitrate (BTTN) as plasticizers in propellant compositions. In the present study, NG and BTTN have been used in different plasticizer to polymer ratios (Pl/Po) and various parameters of each composition have been theoretically predicted. Three propellant compositions plasticized with NG, BTTN and a 1:1 combination of NG and BTTN, have been processed and analyzed for targeted properties. From the theoretical data, it was observed that there is a negligible increase in density impulse beyond a Pl/Po ratio of 2, apart from the higher density and calorimetric values of the NG-plasticized propellant; these plasticizers have a significant effect on the ballistic and mechanical properties. Another observation was that the elongation of BTTN and NG/BTTN (1:1) plasticized propellants is significantly higher at a low crosshead rate than NG-plasticized propellant, implying that the two former propellants have higher strain capabilities at low temperatures and can be used for missiles having long term low temperature storage requirements. Thermal decomposition studies have been carried out by DSC, and for each composition 5 distinct peaks were observed.
Rocznik
Strony
384--407
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • Bharati Vidyapeeth Deemed University, College of Engineering, Ph.D. research scholar, Pune,411043, India
  • High Energy Materials Research Laboratory, Pune, 411021, India
  • Bharati Vidyapeeth Deemed University, College of Engineering, Pune, 411043, India
  • High Energy Materials Research Laboratory, Pune, 411021, India
  • High Energy Materials Research Laboratory, Pune, 411021, India
  • High Energy Materials Research Laboratory, Pune, 411021, India
  • High Energy Materials Research Laboratory, Pune, 411021, India
Bibliografia
  • [1] Sutton, G.P.; Biblarz, O. Rocket Propulsion Elements. 7th ed., Willey, New York, 1986, pp. 474-480; ISBN 0-471-32642-9.
  • [2] Agrawal, J.P. High Energy Materials: Propellants, Explosives and Pyrotechnics. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010, pp. 209-316; ISBN: 978-3-527-32610-5.
  • [3] Pande, S.M.; Sadavarte, V.S.; Bhowmik, D.; Singh, H. NG Plasticized PEPCP Binder Based Advanced Solid Rocket Propellants: Studies on Mechanical Properties. Int. J. Energ. Mater. Chem. Propul. 2012, 11(2): 123-134.
  • [4] Bhowmik, D.; Sadavarte, V.S.; Pande, S.M.; Saraswat, B.S. An Energetic Binder for the Formulation of Advanced Solid Rocket Propellant. Cent. Eur. J. Energ. Mater. 2015, 12(1): 145-158.
  • [5] Gould, R.F. Propellants, Manufacture, Hazards and Testing. Adv. Chem. Ser. 1969, 88.
  • [6] Boilers, C.; Klager, K. Propellants, Manufacture, Hazards and Testing. Adv. Chem. Ser. 1969, 88.
  • [7] Christiansen, W.N. Development of an Acoustic Emission Strand Burning Technique for Burning Rate Prediction. AIAA/SAE, 14th Joint Propulsion Conference, Las Vegas, 1978, 25-27.
  • [8] Rinford, J.H. Technical Review to Advanced Techniques in Acoustical, Electrical and Mechanical Measurements. Bruel and Kjaer, DK-2850 NAERUM, Denmark, 1981, Vol. 2, p. 3.
  • [9] Fang, L.A. A New Method for Measurement of Burning Rates of Propellants and Explosives-Method of Constant Pressure in a Closed Bomb. Int. Annu. Conf. ICT, 19th, Proc., Karlsruhe, 1988, 49/1-49/11.
  • [10] Mallory, D.H. Development of Impact Sensitivity Test at Explosive Research Laboratory. NAVORD, Report 4236, Bruceton, Pennsylvania, 1960.
  • [11] Peters, J.K.G. Production Program of Julius Peter Company for members of M.B.B., Course-81, Proc., Berlin, Bundesanstalt Fur Material Prufung i.e. German Material Testing Laboratory, 1921, 14.
  • [12] ASTM D240-87, Annu. Book ASTM Stand. 1990, Vol. 05.01.
  • [13] Gordon, S.; McBride, B.J. Computer Program for Calculations of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks and Chapman-Jouguet Detonations. NASA-SP-273, 1976.
  • [14] Klohn, W.; Eisele, S. Nitramine Solid Rocket Propellants with Reduced Signature. Propellants, Explos., Pyrotech. 1987, 12: 71-77.
  • [15] Yalun, S.; Hui, R.; Qingjie, J. Comparison of Thermal Behaviors and Decomposition Kinetics of NEPE Propellant Before and After Storage. J. Therm. Anal. Calorim. 2018, 131: 101-111.
  • [16] Li, D.; Feng-Qi, Z.; Qing, P.; Hui-xiang, X. Research on the Thermal Decomposition Behavior of NEPE Propellant Containing CL-20. J. Anal. Appl. Pyrolysis. 2016, 121: 121-127.
  • [17] Fifer, R.A. Chemistry of Nitrate Esters and Nitramine Propellants. In: Fundamentals of Solid Propellants Combustion, Vol. 90, Progress in Astronautics and Aeronautics (Kuo, K.K.; Summerfield, M., Eds.), AIAA, New York, 1984, Chap. 4, pp. 177-237.
  • [18] Oxley, J.C.; Smith, J.L.; Wang, W. Compatibility of Ammonium Nitrate with Monomolecular Explosives. J. Phys. Chem. 1994, 98: 3893-3900.
  • [19] Palopoli, S.F.; Brill, T.B. Thermal Decomposition of Energetic Materials on the Foam Zone and Surface Chemistry of Rapid Decomposing HMX. Combust. Flame. 1991, 87: 45-60.
  • [20] Pivkina, A.N.; Muravyev, N.V.; Monogarov, K.A.; Ostrovsky, V.G.; Fomenkov, I.V.; Milyokhin, Y.M.; Shishov, N.I. Synergistic Effects of Ammonium Perchlorate on HMX: from Thermal Analysis to Combustion. In: Chemical Rocket Propulsion (DeLuca, L.T.; Shimada, T.; Sinditskii, V.P.; Calabro, M., Eds.), Springer Aerospace Technology, Springer International publishing, Switzerland, 2017, pp. 365-380; ISBN 978-3-319-27746-2.
  • [21] Saito, T.; Shimoda, M.; Yamaya, T.; Iwama, A. Ignition of AP-based Composite Solid Propellants Containing Nitramines Exposed to CO2 Laser Radiation at Subatmospheric Pressures. Combust. Flame. 1991, 85: 68-76.
  • [22] Zimmerman, G.A.; Kispersky, J.P.; Nahlovsky, B.D.; Newey, S.L. Embrittlement of Propellants Containing Nitrate Ester Plasticizers. AIAA-82-1099; AIAA/SAE/ASME 18th Joint Propulsion Conf., Cleveland, Ohio, 1982.
  • [23] Adel, W.M.; Kamal, H.; El-Soualey, D. Experimental Determination of Some Design Properties of Viscoelastic Solid Propellant Using Uniaxial Tensile Test. Int. Conf. Aerospace Sciences and Aviation Technolog., ASAT, 14th, Military Technical College, Kobry Elkobbah, Cairo, Egypt, 2011.
  • [24] Kolonko, J.K. High Molecular Weight Polycaprolactone Pre-polymers Used in High Energy Formulations. Patent US 4775432, 1988.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4570242f-8a8f-4209-9911-8b949ef84dba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.